50,509 research outputs found

    Cracked finite elements proposed for NASTRAN

    Get PDF
    The recent introduction of special crack-tip singularity elements, usually referred to as cracked elements, has brought the power and flexibility of the finite-element method to bear much more effectively on fracture mechanics problems. This paper recalls the development of two cracked elements and presents the results of some applications proving their accuracy and economy. Judging from the available literature on numerical methods in fracture mechanics, it seems clear that the elements described have been used more extensively than any others in practical fracture mechanics applications

    Fracture mechanics

    Get PDF
    Fracture mechanics is a rapidly emerging discipline for assessing the residual strength of structures containing flaws due to fatigue, corrosion or accidental damage and for anticipating the rate of which such flaws will propagate if not repaired. The discipline is also applicable in the design of structures with improved resistance to such flaws. The present state of the design art is reviewed using this technology to choose materials, to configure safe and efficient structures, to specify inspection procedures, to predict lives of flawed structures and to develop reliability of current and future airframes

    A nonlinear high temperature fracture mechanics basis for strainrange partitioning

    Get PDF
    A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction

    Behaviour of FRP-to-concrete bonded joints

    Get PDF
    The bond behaviour between FRP (fibre-reinforced polymer) and concrete is a consideration in the design of FRP strengthening mechanisms for structurally deficient or functionally obsolete concrete structures. In the past, a number of empirical models and fracture mechanics based theoretical models have been proposed for determining the effective bond length and bond strength of FRP sheets/plates bonded to concrete. However, these methods have yielded large discrepancies in the predictions of effective bond length and bond strength. In this paper, the results of an experimental investigation into effective bond length and bond strength are presented. Comparison of experiments results with predictions from three empirical and three fracture mechanics based theoretical models shows that a recently proposed fracture mechanics based local-bond slip model provides a conservative prediction of the effective bond length and an accurate prediction of bond strengt

    Viscoplastic constitutive models for zero-thickness interface elements, formulation and applications

    Get PDF
    An energy-based work-softening visco-plastic model for zero-thickness interface elements has been developed as an extension of an existing elastic-perfectly-viscoplastic formulation. In the inviscid limit the model also collapses into a well-established fracture mechanics-based elasto-plastic model. The new model is verified satisfactorily for common loading cases at interfaces such as pure tension (mode I) opening, and shear-compression (mixed-mode) sliding, with results that in the long term match the predictions of the fracture mechanics inviscid model

    Viscoplastic constitutive models for zero-thickness interface elements, formulation and applications

    Get PDF
    An energy-based work-softening visco-plastic model for zero-thickness interface elements has been developed as an extension of an existing elastic-perfectly-viscoplastic formulation. In the inviscid limit the model also collapses into a well-established fracture mechanics-based elasto-plastic model. The new model is verified satisfactorily for common loading cases at interfaces such as pure tension (mode I) opening, and shear-compression (mixed-mode) sliding, with results that in the long term match the predictions of the fracture mechanics inviscid model.Postprint (published version

    Aspects of fracture mechanics in cryogenic model design. Part 1: Fundamentals of fracture mechanics

    Get PDF
    The use of fracture mechanics for predicting fracture and fatigue crack growth in metals is presented

    Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine

    Get PDF
    Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C

    Variational problems in fracture mechanics

    Full text link
    We present some recent existence results for the variational model of crack growth in brittle materials proposed by Francfort and Marigo in 1998. These results, obtained in collaboration with Francfort and Toader, cover the case of arbitrary space dimension with a general quasiconvex bulk energy and with prescribed boundary deformations and applied loads.Comment: 9 page
    • …
    corecore