18,805 research outputs found
Fracture simulation for zirconia toughened alumina microstructure
Purpose - The purpose of this paper is to describe finite element modelling
for fracture and fatigue behaviour of zirconia toughened alumina
microstructures. Design/methodology/approach - A two-dimensional finite element
model is developed with an actual - 10 vol%
microstructure. A bilinear, time-independent cohesive zone law is implemented
for describing fracture behaviour of grain boundaries. Simulation conditions
are similar to those found at contact between a head and a cup of hip
prosthesis. Residual stresses arisen from the mismatch of thermal coefficient
between grains are determined. Then, effects of a micro-void and contact stress
magnitude are investigated with models containing residual stresses. For the
purpose of simulating fatigue behaviour, cyclic loadings are applied to the
models. Findings - Results show that crack density is gradually increased with
increasing magnitude of contact stress or number of fatigue cycles. It is also
identified that a micro-void brings about the increase of crack density rate.
Social implications - This paper is the first step for predicting the lifetime
of ceramic implants. The social implications would appear in the next few years
about health issues. Originality/value - This proposed finite element method
allows describing fracture and fatigue behaviours of alumina-zirconia
microstructures for hip prosthesis, provided that a microstructure image is
available
Brittleness index of machinable dental materials and its relation to the marginal chipping factor
OBJECTIVES:
The machinability of a material can be measured with the calculation of its brittleness index (BI). It is possible that different materials with different BI could produce restorations with varied marginal integrity. The degree of marginal chipping of a milled restoration can be estimated by the calculation of the marginal chipping factor (CF). The aim of this study is to investigate any possible correlation between the BI of machinable dental materials and the CF of the final restorations.
METHODS:
The CERECTM system was used to mill a wide range of materials used with that system; namely the Paradigm MZ100TM (3M/ESPE), Vita Mark II (VITA), ProCAD (Ivoclar-Vivadent) and IPS e.max CAD (Ivoclar-Vivadent). A Vickers hardness Tester was used for the calculation of BI, while for the calculation of CF the percentage of marginal chipping of crowns prepared with bevelled marginal angulations was estimated.
RESULTS:
The results of this study showed that Paradigm MZ100 had the lowest BI and CF, while IPS e.max CAD demonstrated the highest BI and CF. Vita Mark II and ProCAD had similar BI and CF and were lying between the above materials. Statistical analysis of the results showed that there is a perfect positive correlation between BI and CF for all the materials.
CONCLUSIONS:
The BI and CF could be both regarded as indicators of a material’s machinability. Within the limitations of this study it was shown that as the BI increases so does the potential for marginal chipping, indicating that the BI of a material can be used as a predictor of the CF
Recommended from our members
A micromechanical fracture analysis to investigate the effect of healing particles on the overall mechanical response of a self-healing particulate composite
A computational fracture analysis is conducted on a self‐healing particulate composite employing a finite element model of an actual microstructure. The key objective is to quantify the effects of the actual morphology and the fracture properties of the healing particles on the overall mechanical behaviour of the (MoSi2) particle‐dispersed Yttria Stabilised Zirconia (YSZ) composite. To simulate fracture, a cohesive zone approach is utilised whereby cohesive elements are embedded throughout the finite element mesh allowing for arbitrary crack initiation and propagation in the microstructure. The fracture behaviour in terms of the composite strength and the percentage of fractured particles is reported as a function of the mismatch in fracture properties between the healing particles and the matrix as well as a function of particle/matrix interface strength and fracture energy. The study can be used as a guiding tool for designing an extrinsic self‐healing material and understanding the effect of the healing particles on the overall mechanical properties of the material
Resistance to Fracture of Two All-Ceramic Crown Materials Following Endodontic Access
Statement of problem
There is currently no protocol for managing endodontic access openings for all-ceramic crowns. A direct restorative material is generally used to repair the access opening, rendering a repaired crown as the definitive restoration. This endodontic procedure, however, may weaken the restoration or initiate microcracks that may propagate, resulting in premature failure of the restoration. Purpose
The purpose of this in vitro study was to evaluate how an endodontic access opening prepared through an all-ceramic crown altered the structural integrity of the ceramic, and the effect of a repair of this access on the load to failure of an all-ceramic crown. Material and methods
Twenty-four alumina (Procera) and 24 zirconia (Procera) crowns were fabricated and cemented (Rely X Luting Plus Cement) onto duplicate epoxy resin dies. Twelve crowns of each were accessed to simulate root canal treatment therapy. Surface defects of all accessed specimens were evaluated with an environmental scanning electron microscope. The specimens were repaired with a porcelain repair system (standard adhesive resin/composite resin protocol) and were loaded to failure in a universal testing machine. Observations made visually and microscopically noted veneer delamination from the core, core fracture, shear within the veneer porcelain, or a combination thereof. A Kruskal-Wallis test was used to determine if a significant difference (α=.05) in load to failure existed between the 4 groups, and a Mann-Whitney test with a Bonferroni correction (P Results
All specimens exhibited edge chipping around the access openings. Some displayed larger chips within the veneering porcelain, and 4 zirconia crowns showed radial crack formation. There was a significant difference in load to failure among all groups with the exception of the alumina intact and repaired specimens (P=.695). The alumina crowns generally showed fracture of the coping with the veneering porcelain still bonded to the core, whereas the zirconia copings tended not to fracture but experienced veneering porcelain delamination. Conclusion
Endodontic access through all-ceramic crowns resulted in a significant loss of strength in the zirconia specimens but not in the alumina specimens
Continuous fiber ceramic matrix composites for heat engine components
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs
Transverse cracking in metal/ceramic composites with lamellar microstructure
Open Access funded by European Structural Integrity SocietyPeer reviewedPublisher PD
Wave propagation through alumina-porous alumina laminates
A Brazilian disk geometry of an alumina layered composite with alternating
dense and porous layers was dynamically loaded using a Split-Hopkinson Pressure
Bar (SHPB)apparatus under compression. High-speed imaging and transmitted force
measurements were used to gain an insight into stress wave propagation and
mitigation through such a layered system. Uniformly distributed porosities of
20 and 50 vol % were introduced into the interlayers by the addition of fine
graphite particles which volatilized during heat treatment. Brazilian disk
samples were cut from the cylinders which were drilled out of the sintered
laminated sample. The disks were subjected to dynamic impact loading in
perpendicular and parallel orientations to the layers in order to investigate
the influence of the direction of impact. The dynamic failure process of the
layered ceramic consisted of the initiation and propagation of the cracks
mainly along the interphases of the layers. Upon impact, the impact energy was
dissipated through fracture in parallel orientation (0 deg) but transmitted in
perpendicular (90 deg) orientations. The high degree of correlation between the
transmitted force, microstructure and orientation in which the layered systems
were impacted is discussed.Comment: 39 pages, 14 figures, 2 tables. Accepted for publication in the
Journal of the European Ceramic Societ
Development of high temperature materials for solid propellant rocket nozzle applications
Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported
Stochastic Simulation of Mudcrack Damage Formation in an Environmental Barrier Coating
The FEAMAC/CARES program, which integrates finite element analysis (FEA) with the MAC/GMC (Micromechanics Analysis Code with Generalized Method of Cells) and the CARES/Life (Ceramics Analysis and Reliability Evaluation of Structures / Life Prediction) programs, was used to simulate the formation of mudcracks during the cooling of a multilayered environmental barrier coating (EBC) deposited on a silicon carbide substrate. FEAMAC/CARES combines the MAC/GMC multiscale micromechanics analysis capability (primarily developed for composite materials) with the CARES/Life probabilistic multiaxial failure criteria (developed for brittle ceramic materials) and Abaqus (Dassault Systmes) FEA. In this report, elastic modulus reduction of randomly damaged finite elements was used to represent discrete cracking events. The use of many small-sized low-aspect-ratio elements enabled the formation of crack boundaries, leading to development of mudcrack-patterned damage. Finite element models of a disk-shaped three-dimensional specimen and a twodimensional model of a through-the-thickness cross section subjected to progressive cooling from 1,300 C to an ambient temperature of 23 C were made. Mudcrack damage in the coating resulted from the buildup of residual tensile stresses between the individual material constituents because of thermal expansion mismatches between coating layers and the substrate. A two-parameter Weibull distribution characterized the coating layer stochastic strength response and allowed the effect of the Weibull modulus on the formation of damage and crack segmentation lengths to be studied. The spontaneous initiation of cracking and crack coalescence resulted in progressively smaller mudcrack cells as cooling progressed, consistent with a fractal-behaved fracture pattern. Other failure modes such as delamination, and possibly spallation, could also be reproduced. The physical basis assumed and the heuristic approach employed, which involves a simple stochastic cellular automaton methodology to approximate the crack growth process, are described. The results ultimately show that a selforganizing mudcrack formation can derive from a Weibull distribution that is used to describe the stochastic strength response of the bulk brittle ceramic material layers of an EBC
Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites
Double-walled carbon nanotube/alumina composite powders with low carbon contents (2– 3 wt.%) are prepared using three different methods and densified by spark plasma sintering. The mechanical properties and electrical conductivity are investigated and correlated with the microstructure of the dense materials. Samples prepared by in situ synthesis of carbon nanotubes (CNTs) in impregnated submicronic alumina are highly homogeneous and present the higher electrical conductivity (2.2–3.5 Scm-1) but carbon films at grain boundaries induce a poor cohesion of the materials. Composites prepared by mixing using moderate sonication of as-prepared double-walled CNTs and lyophilisation, with little damage to the CNTs, have a fracture strength higher (+30%) and a fracture toughness similar (5.6 vs 5.4 MPa m1/2) to alumina with a similar submicronic grain size. This is correlated with crack-bridging by CNTs on a large scale, despite a lack of homogeneity of the CNT distribution
- …