187,324 research outputs found
Focused-ion-beam processing for photonics
Although focused ion beam (FIB) processing is a well-developed technology for many applications in electronics and physics, it has found limited application to photonics. Due to its very high spatial resolution in the order of 10 nm, and its ability to mill almost any material, it seems to have a good potential for fabricating or modifying nanophotonic structures such as photonic crystals. The two main issues are FIB-induced optical loss, e.g., due to implantation of gallium ions, and the definition of vertical sidewalls, which is affected by redeposition effects. The severity of the loss problem was found to depend on the base material, silicon being rather sensitive to this effect. The optical loss can be significantly reduced by annealing the processed samples. Changing the scanning strategy for the ion beam can both reduce the impact of gallium implantation and the redeposition effect
Enhanced resistance of single-layer graphene to ion bombardment
We report that single-layer graphene on a SiO_2/Si substrate withstands ion bombardment up to ~7
times longer than expected when exposed to focused Ga^+ ion beam. The exposure is performed in
a dual beam scanning electron microscope/focused ion beam system at 30 kV accelerating voltage
and 41 pA current. Ga^+ ion flux is determined by sputtering a known volume of hydrogenated
amorphous carbon film deposited via plasma-enhanced chemical vapor deposition
Characterization of Focused Ion Beam Milled Lines
As the nanotechnology is becoming an important aspect of science research and development, the application of the focused ion beam (FIB) technique is getting more attention. The focused ion beam is a tool for milling tiny objects. This research explored the characterization of FIB by relating milled line widths with their milling time. The scanning electron microscope (SEM) is used to image the milled lines and ImageJ to analyze the images. We found that the through-lens-detector (TLD) provides the best SEM image by reducing the shadowing effect which interfered with the data analysis. A logarithmic relation between the milled line width and milling time was determined. These presented results can help scientists design a FIB milling experiment in the future
Direct magneto-optical compression of an effusive atomic beam for high-resolution focused ion beam application
An atomic rubidium beam formed in a 70 mm long two-dimensional
magneto-optical trap (2D MOT), directly loaded from a collimated Knudsen
source, is analyzed using laser-induced fluorescence. The longitudinal velocity
distribution, the transverse temperature and the flux of the atomic beam are
reported. The equivalent transverse reduced brightness of an ion beam with
similar properties as the atomic beam is calculated because the beam is
developed to be photoionized and applied in a focused ion beam. In a single
two-dimensional magneto-optical trapping step an equivalent transverse reduced
brightness of A/(m sr eV) was
achieved with a beam flux equivalent to nA. The
temperature of the beam is further reduced with an optical molasses after the
2D MOT. This increased the equivalent brightness to A/(m sr eV). For currents below 10 pA, for which disorder-induced
heating can be suppressed, this number is also a good estimate of the ion beam
brightness that can be expected. Such an ion beam brightness would be a six
times improvement over the liquid metal ion source and could improve the
resolution in focused ion beam nanofabrication.Comment: 10 pages, 8 figures, 1 tabl
Realization of 2-dimensional air-bridge silicon photonic crystals by focused ion beam milling and nanopolishing
We report the design and fabrication of small photonic crystal structures which are combined with conventional dielectric ridge waveguides. We describe in details the fabrication of both rough and smooth membranes, which are used as host for photonic crystals. Two Focused Ion Beam milling experiments are highlighted: the first one shows how photonic crystals can be fast and accurate milled into a Si membrane, whereas the second experiment demonstrates how focused ion beam milling can turn a rough surface into a well-patterned nano-smooth surface. The previously ultra rough surface showed no detectable roughness after milling due to the nanopolishing effect of the focused ion beam milling
Focused Ion Beam Fabrication
Contains reports on five research projects.DARPA/Naval Electronic Systems Command (Contract MDA-903-85-C-0215)Charles Stark Draper Laboratory (Contract DL-H-261827)U.S. Navy - Office of Naval Research (Contract N00014-84-K-0073)Nippon Telephone and TelegraphHitachi Central Research Laborator
Focused Ion Beam Fabrication
Contains summary of research program and reports on four research projects.Charles Stark Draper Laboratory (Contract DL-H-225270)Hughes Research LaboratoriesInternational Business Machines, Inc. (Contract 456614)Nippon Telegraph and Telephone, Inc.U.S. Navy - Office of Naval Research (Contract N00014-84-K-0073)U.S. Department of Defense (Contract MDA903-85-C-0215)Hitachi Central Research Laborator
Focused Ion Beam Tomography
To study the fundamental effect of shape and morphology of any material on its properties, it is very essential to know and study its morphology. Focused ion beam (FIB) tomography is a 3D chemical and structural relationship studying technique. The instrumentation of FIB looks like that of the scanning electron microscopy (SEM), but there is a major difference in the beam used for scanning. For SEM, a beam of electrons is used with scanning medium whereas in FIB, a much focused beam of ions is used for scanning. FIB can be used for lithography and ablation purposes, but due to advancements and high-energy focused beam, it is nowadays being used as a tomographic technique. Tomography is defined as imaging by sectoring or cross-sectioning any desired area. The hyphenation of FIB with energy-dispersive spectrometry or secondary ion mass spectrometry can give us elemental analysis with very high-resolution 3D images for a sample. This technique contributes to acquaintance of qualitative and quantitative analyses, 3D volume creations, and image processing. In this chapter, we will discuss the advancements in FIB instrumentation and its use as 3D imaging tool for different samples ranging from nanometer (nm)-sized materials to micrometer (μm)-sized biological samples
- …