3,388 research outputs found
Rating and aspect-based opinion graph embeddings for explainable recommendations
The success of neural network embeddings has entailed a renewed interest in
using knowledge graphs for a wide variety of machine learning and information
retrieval tasks. In particular, recent recommendation methods based on graph
embeddings have shown state-of-the-art performance. In general, these methods
encode latent rating patterns and content features. Differently from previous
work, in this paper, we propose to exploit embeddings extracted from graphs
that combine information from ratings and aspect-based opinions expressed in
textual reviews. We then adapt and evaluate state-of-the-art graph embedding
techniques over graphs generated from Amazon and Yelp reviews on six domains,
outperforming baseline recommenders. Additionally, our method has the advantage
of providing explanations that involve the coverage of aspect-based opinions
given by users about recommended items.Comment: arXiv admin note: substantial text overlap with arXiv:2107.0322
A survey of data mining techniques for social media analysis
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors
Graphing else matters: exploiting aspect opinions and ratings in explainable graph-based recommendations
The success of neural network embeddings has entailed a renewed interest in
using knowledge graphs for a wide variety of machine learning and information
retrieval tasks. In particular, current recommendation methods based on graph
embeddings have shown state-of-the-art performance. These methods commonly
encode latent rating patterns and content features. Different from previous
work, in this paper, we propose to exploit embeddings extracted from graphs
that combine information from ratings and aspect-based opinions expressed in
textual reviews. We then adapt and evaluate state-of-the-art graph embedding
techniques over graphs generated from Amazon and Yelp reviews on six domains,
outperforming baseline recommenders. Our approach has the advantage of
providing explanations which leverage aspect-based opinions given by users
about recommended items. Furthermore, we also provide examples of the
applicability of recommendations utilizing aspect opinions as explanations in a
visualization dashboard, which allows obtaining information about the most and
least liked aspects of similar users obtained from the embeddings of an input
graph
Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier
With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy
- …