292 research outputs found
Coalitional Games with Overlapping Coalitions for Interference Management in Small Cell Networks
In this paper, we study the problem of cooperative interference management in
an OFDMA two-tier small cell network. In particular, we propose a novel
approach for allowing the small cells to cooperate, so as to optimize their
sum-rate, while cooperatively satisfying their maximum transmit power
constraints. Unlike existing work which assumes that only disjoint groups of
cooperative small cells can emerge, we formulate the small cells' cooperation
problem as a coalition formation game with overlapping coalitions. In this
game, each small cell base station can choose to participate in one or more
cooperative groups (or coalitions) simultaneously, so as to optimize the
tradeoff between the benefits and costs associated with cooperation. We study
the properties of the proposed overlapping coalition formation game and we show
that it exhibits negative externalities due to interference. Then, we propose a
novel decentralized algorithm that allows the small cell base stations to
interact and self-organize into a stable overlapping coalitional structure.
Simulation results show that the proposed algorithm results in a notable
performance advantage in terms of the total system sum-rate, relative to the
noncooperative case and the classical algorithms for coalitional games with
non-overlapping coalitions
Cross-tier interference management with a distributed antenna system for multi-tier cellular networks
Interference Management in Heterogeneous Networks with Blind Transmitters
Future multi-tier communication networks will require enhanced network
capacity and reduced overhead. In the absence of Channel State Information
(CSI) at the transmitters, Blind Interference Alignment (BIA) and Topological
Interference Management (TIM) can achieve optimal Degrees of Freedom (DoF),
minimising network's overhead. In addition, Non-Orthogonal Multiple Access
(NOMA) can increase the sum rate of the network, compared to orthogonal radio
access techniques currently adopted by 4G networks. Our contribution is two
interference management schemes, BIA and a hybrid TIM-NOMA scheme, employed in
heterogeneous networks by applying user-pairing and Kronecker Product
representation. BIA manages inter- and intra-cell interference by antenna
selection and appropriate message scheduling. The hybrid scheme manages
intra-cell interference based on NOMA and inter-cell interference based on TIM.
We show that both schemes achieve at least double the rate of TDMA. The hybrid
scheme always outperforms TDMA and BIA in terms of Degrees of Freedom (DoF).
Comparing the two proposed schemes, BIA achieves more DoF than TDMA under
certain restrictions, and provides better Bit-Error-Rate (BER) and sum rate
performance to macrocell users, whereas the hybrid scheme improves the
performance of femtocell users.Comment: 30 pages, 18 figure
Interference Alignment for Cognitive Radio Communications and Networks: A Survey
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe
- …