336 research outputs found

    Low-cost interactive active monocular range finder

    Full text link
    This paper describes a low-cost interactive active monocular range finder and illustrates the effect of introducing interactivity to the range acquisition process. The range finder consists of only one camera and a laser pointer, to which three LEDs are attached. When a user scans the laser along surfaces of objects, the camera captures the image of spots (one from the laser, and the others from LEDs), and triangulation is carried out using the camera\u27s viewing direction and the optical axis of the laser. The user interaction allows the range finder to acquire range data in which the sampling rate varies across the object depending on the underlying surface structures. Moreover, the processes of separating objects from the background and/or finding parts in the object can be achieved using the operator\u27s knowledge of the objects

    Comprehensive Extrinsic Calibration of a Camera and a 2D Laser Scanner for a Ground Vehicle

    Get PDF
    Cameras and laser scanners are two important kinds of perceptive sensors and both become more and more commonly used for intelligent ground vehicles; the calibration of these sensors is a fundamental task. A new method is proposed to perform COMPREHENSIVE extrinsic calibration of a SINGLE camera-2D laser scanner pair, i.e. the process of revealing ALL the spatial relationships among the camera coordinates system, the laser scanner coordinates system, the ground coordinates system, and the vehicle coordinates system. The proposed method is mainly based on the convenient and widely used chessboard calibration practice and can be conveniently implemented. The proposed method has been tested on both synthetic data and real data based experiments, which validate the effectiveness of the proposed method.La caméra et le scanner laser sont deux types importants de capteurs perceptifs et tous les deux deviennent de plus en plus communs pour de nombreuses applications des véhicules intelligents. La calibration de ces capteurs est une tâche fondamentale. Dans ce rapport, on a propose une nouvelle méthode pour réaliser la calibration extrinsèque compréhensive d'une seule paire caméra-scanner laser 2D, à savoir le procédé de révéler tous les relations spatiales parmi un système de coordonnées caméra, un système de coordonnées scanner laser, un système de coordonnées terrestre, et un système de coordonnées véhicule. La méthode proposée se fonde principalement sur la practique de cabliration au damier et est facile à mettre en œuvre. Des tests des données réelles et des données synthétiques ont validé la performance de la méthode proposée

    Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR and Panoramic Camera Using a Printed Chessboard

    Full text link
    This paper presents a novel method for fully automatic and convenient extrinsic calibration of a 3D LiDAR and a panoramic camera with a normally printed chessboard. The proposed method is based on the 3D corner estimation of the chessboard from the sparse point cloud generated by one frame scan of the LiDAR. To estimate the corners, we formulate a full-scale model of the chessboard and fit it to the segmented 3D points of the chessboard. The model is fitted by optimizing the cost function under constraints of correlation between the reflectance intensity of laser and the color of the chessboard's patterns. Powell's method is introduced for resolving the discontinuity problem in optimization. The corners of the fitted model are considered as the 3D corners of the chessboard. Once the corners of the chessboard in the 3D point cloud are estimated, the extrinsic calibration of the two sensors is converted to a 3D-2D matching problem. The corresponding 3D-2D points are used to calculate the absolute pose of the two sensors with Unified Perspective-n-Point (UPnP). Further, the calculated parameters are regarded as initial values and are refined using the Levenberg-Marquardt method. The performance of the proposed corner detection method from the 3D point cloud is evaluated using simulations. The results of experiments, conducted on a Velodyne HDL-32e LiDAR and a Ladybug3 camera under the proposed re-projection error metric, qualitatively and quantitatively demonstrate the accuracy and stability of the final extrinsic calibration parameters.Comment: 20 pages, submitted to the journal of Remote Sensin
    • …
    corecore