15,759 research outputs found

    Variational Reasoning for Question Answering with Knowledge Graph

    Full text link
    Knowledge graph (KG) is known to be helpful for the task of question answering (QA), since it provides well-structured relational information between entities, and allows one to further infer indirect facts. However, it is challenging to build QA systems which can learn to reason over knowledge graphs based on question-answer pairs alone. First, when people ask questions, their expressions are noisy (for example, typos in texts, or variations in pronunciations), which is non-trivial for the QA system to match those mentioned entities to the knowledge graph. Second, many questions require multi-hop logic reasoning over the knowledge graph to retrieve the answers. To address these challenges, we propose a novel and unified deep learning architecture, and an end-to-end variational learning algorithm which can handle noise in questions, and learn multi-hop reasoning simultaneously. Our method achieves state-of-the-art performance on a recent benchmark dataset in the literature. We also derive a series of new benchmark datasets, including questions for multi-hop reasoning, questions paraphrased by neural translation model, and questions in human voice. Our method yields very promising results on all these challenging datasets

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    User Feedback in Probabilistic XML

    Get PDF
    Data integration is a challenging problem in many application areas. Approaches mostly attempt to resolve semantic uncertainty and conflicts between information sources as part of the data integration process. In some application areas, this is impractical or even prohibitive, for example, in an ambient environment where devices on an ad hoc basis have to exchange information autonomously. We have proposed a probabilistic XML approach that allows data integration without user involvement by storing semantic uncertainty and conflicts in the integrated XML data. As a\ud consequence, the integrated information source represents\ud all possible appearances of objects in the real world, the\ud so-called possible worlds.\ud \ud In this paper, we show how user feedback on query results\ud can resolve semantic uncertainty and conflicts in the\ud integrated data. Hence, user involvement is effectively postponed to query time, when a user is already interacting actively with the system. The technique relates positive and\ud negative statements on query answers to the possible worlds\ud of the information source thereby either reinforcing, penalizing, or eliminating possible worlds. We show that after repeated user feedback, an integrated information source better resembles the real world and may converge towards a non-probabilistic information source

    Semantic Modeling of Analytic-based Relationships with Direct Qualification

    Full text link
    Successfully modeling state and analytics-based semantic relationships of documents enhances representation, importance, relevancy, provenience, and priority of the document. These attributes are the core elements that form the machine-based knowledge representation for documents. However, modeling document relationships that can change over time can be inelegant, limited, complex or overly burdensome for semantic technologies. In this paper, we present Direct Qualification (DQ), an approach for modeling any semantically referenced document, concept, or named graph with results from associated applied analytics. The proposed approach supplements the traditional subject-object relationships by providing a third leg to the relationship; the qualification of how and why the relationship exists. To illustrate, we show a prototype of an event-based system with a realistic use case for applying DQ to relevancy analytics of PageRank and Hyperlink-Induced Topic Search (HITS).Comment: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015

    Taming Data Explosion in Probabilistic Information Integration

    Get PDF
    Data integration has been a challenging problem for decades. In an ambient environment, where many autonomous devices have their own information sources and network connectivity is ad hoc and peer-to-peer, it even becomes a serious bottleneck. To enable devices to exchange information without the need for interaction with a user at data integration time and without the need for extensive semantic annotations, a probabilistic approach seems rather promising. It simply teaches the device how to cope with the uncertainty occurring during data integration. Unfortunately, without any kind of world knowledge, almost everything becomes uncertain, hence maintaining all possibilities produces huge integrated information sources. In this paper, we claim that only very simple and generic rules are enough world knowledge to drastically reduce the amount of uncertainty, hence to tame the data explosion to a manageable size

    Qualitative Effects of Knowledge Rules in Probabilistic Data Integration

    Get PDF
    One of the problems in data integration is data overlap: the fact that different data sources have data on the same real world entities. Much development time in data integration projects is devoted to entity resolution. Often advanced similarity measurement techniques are used to remove semantic duplicates from the integration result or solve other semantic conflicts, but it proofs impossible to get rid of all semantic problems in data integration. An often-used rule of thumb states that about 90% of the development effort is devoted to solving the remaining 10% hard cases. In an attempt to significantly decrease human effort at data integration time, we have proposed an approach that stores any remaining semantic uncertainty and conflicts in a probabilistic database enabling it to already be meaningfully used. The main development effort in our approach is devoted to defining and tuning knowledge rules and thresholds. Rules and thresholds directly impact the size and quality of the integration result. We measure integration quality indirectly by measuring the quality of answers to queries on the integrated data set in an information retrieval-like way. The main contribution of this report is an experimental investigation of the effects and sensitivity of rule definition and threshold tuning on the integration quality. This proves that our approach indeed reduces development effort — and not merely shifts the effort to rule definition and threshold tuning — by showing that setting rough safe thresholds and defining only a few rules suffices to produce a ‘good enough’ integration that can be meaningfully used
    corecore