11,306 research outputs found
Finding Temporally Consistent Occlusion Boundaries in Videos using Geometric Context
We present an algorithm for finding temporally consistent occlusion
boundaries in videos to support segmentation of dynamic scenes. We learn
occlusion boundaries in a pairwise Markov random field (MRF) framework. We
first estimate the probability of an spatio-temporal edge being an occlusion
boundary by using appearance, flow, and geometric features. Next, we enforce
occlusion boundary continuity in a MRF model by learning pairwise occlusion
probabilities using a random forest. Then, we temporally smooth boundaries to
remove temporal inconsistencies in occlusion boundary estimation. Our proposed
framework provides an efficient approach for finding temporally consistent
occlusion boundaries in video by utilizing causality, redundancy in videos, and
semantic layout of the scene. We have developed a dataset with fully annotated
ground-truth occlusion boundaries of over 30 videos ($5000 frames). This
dataset is used to evaluate temporal occlusion boundaries and provides a much
needed baseline for future studies. We perform experiments to demonstrate the
role of scene layout, and temporal information for occlusion reasoning in
dynamic scenes.Comment: Applications of Computer Vision (WACV), 2015 IEEE Winter Conference
o
Learning to Segment Human by Watching YouTube
An intuition on human segmentation is that when a human is moving in a video,
the video-context (e.g., appearance and motion clues) may potentially infer
reasonable mask information for the whole human body. Inspired by this, based
on popular deep convolutional neural networks (CNN), we explore a very-weakly
supervised learning framework for human segmentation task, where only an
imperfect human detector is available along with massive weakly-labeled YouTube
videos. In our solution, the video-context guided human mask inference and CNN
based segmentation network learning iterate to mutually enhance each other
until no further improvement gains. In the first step, each video is decomposed
into supervoxels by the unsupervised video segmentation. The superpixels within
the supervoxels are then classified as human or non-human by graph optimization
with unary energies from the imperfect human detection results and the
predicted confidence maps by the CNN trained in the previous iteration. In the
second step, the video-context derived human masks are used as direct labels to
train CNN. Extensive experiments on the challenging PASCAL VOC 2012 semantic
segmentation benchmark demonstrate that the proposed framework has already
achieved superior results than all previous weakly-supervised methods with
object class or bounding box annotations. In addition, by augmenting with the
annotated masks from PASCAL VOC 2012, our method reaches a new state-of-the-art
performance on the human segmentation task.Comment: Very-weakly supervised learning framework. New state-of-the-art
performance on the human segmentation task! (Published in T-PAMI 2017
SFNet: Learning Object-aware Semantic Correspondence
We address the problem of semantic correspondence, that is, establishing a
dense flow field between images depicting different instances of the same
object or scene category. We propose to use images annotated with binary
foreground masks and subjected to synthetic geometric deformations to train a
convolutional neural network (CNN) for this task. Using these masks as part of
the supervisory signal offers a good compromise between semantic flow methods,
where the amount of training data is limited by the cost of manually selecting
point correspondences, and semantic alignment ones, where the regression of a
single global geometric transformation between images may be sensitive to
image-specific details such as background clutter. We propose a new CNN
architecture, dubbed SFNet, which implements this idea. It leverages a new and
differentiable version of the argmax function for end-to-end training, with a
loss that combines mask and flow consistency with smoothness terms.
Experimental results demonstrate the effectiveness of our approach, which
significantly outperforms the state of the art on standard benchmarks.Comment: cvpr 2019 oral pape
Exploring Object Relation in Mean Teacher for Cross-Domain Detection
Rendering synthetic data (e.g., 3D CAD-rendered images) to generate
annotations for learning deep models in vision tasks has attracted increasing
attention in recent years. However, simply applying the models learnt on
synthetic images may lead to high generalization error on real images due to
domain shift. To address this issue, recent progress in cross-domain
recognition has featured the Mean Teacher, which directly simulates
unsupervised domain adaptation as semi-supervised learning. The domain gap is
thus naturally bridged with consistency regularization in a teacher-student
scheme. In this work, we advance this Mean Teacher paradigm to be applicable
for cross-domain detection. Specifically, we present Mean Teacher with Object
Relations (MTOR) that novelly remolds Mean Teacher under the backbone of Faster
R-CNN by integrating the object relations into the measure of consistency cost
between teacher and student modules. Technically, MTOR firstly learns
relational graphs that capture similarities between pairs of regions for
teacher and student respectively. The whole architecture is then optimized with
three consistency regularizations: 1) region-level consistency to align the
region-level predictions between teacher and student, 2) inter-graph
consistency for matching the graph structures between teacher and student, and
3) intra-graph consistency to enhance the similarity between regions of same
class within the graph of student. Extensive experiments are conducted on the
transfers across Cityscapes, Foggy Cityscapes, and SIM10k, and superior results
are reported when comparing to state-of-the-art approaches. More remarkably, we
obtain a new record of single model: 22.8% of mAP on Syn2Real detection
dataset.Comment: CVPR 2019; The codes and model of our MTOR are publicly available at:
https://github.com/caiqi/mean-teacher-cross-domain-detectio
- …