2,210 research outputs found

    Factor analysis modelling for speaker verification with short utterances

    Get PDF
    This paper examines combining both relevance MAP and subspace speaker adaptation processes to train GMM speaker models for use in speaker verification systems with a particular focus on short utterance lengths. The subspace speaker adaptation method involves developing a speaker GMM mean supervector as the sum of a speaker-independent prior distribution and a speaker dependent offset constrained to lie within a low-rank subspace, and has been shown to provide improvements in accuracy over ordinary relevance MAP when the amount of training data is limited. It is shown through testing on NIST SRE data that combining the two processes provides speaker models which lead to modest improvements in verification accuracy for limited data situations, in addition to improving the performance of the speaker verification system when a larger amount of available training data is available

    Adaptation of reference patterns in word-based speech recognition

    Get PDF

    The 2005 AMI system for the transcription of speech in meetings

    Get PDF
    In this paper we describe the 2005 AMI system for the transcription\ud of speech in meetings used for participation in the 2005 NIST\ud RT evaluations. The system was designed for participation in the speech\ud to text part of the evaluations, in particular for transcription of speech\ud recorded with multiple distant microphones and independent headset\ud microphones. System performance was tested on both conference room\ud and lecture style meetings. Although input sources are processed using\ud different front-ends, the recognition process is based on a unified system\ud architecture. The system operates in multiple passes and makes use\ud of state of the art technologies such as discriminative training, vocal\ud tract length normalisation, heteroscedastic linear discriminant analysis,\ud speaker adaptation with maximum likelihood linear regression and minimum\ud word error rate decoding. In this paper we describe the system performance\ud on the official development and test sets for the NIST RT05s\ud evaluations. The system was jointly developed in less than 10 months\ud by a multi-site team and was shown to achieve very competitive performance

    Transcription of conference room meetings: an investigation

    Get PDF
    The automatic processing of speech collected in conference style meetings has attracted considerable interest with several large scale projects devoted to this area. In this paper we explore the use of various meeting corpora for the purpose of automatic speech recognition. In particular we investigate the similarity of these resources and how to efficiently use them in the construction of a meeting transcription system. The analysis shows distinctive features for each resource. However the benefit in pooling data and hence the similarity seems sufficient to speak of a generic conference meeting domain . In this context this paper also presents work on development for the AMI meeting transcription system, a joint effort by seven sites working on the AMI (augmented multi-party interaction) project

    Environmentally robust ASR front-end for deep neural network acoustic models

    Get PDF
    This paper examines the individual and combined impacts of various front-end approaches on the performance of deep neural network (DNN) based speech recognition systems in distant talking situations, where acoustic environmental distortion degrades the recognition performance. Training of a DNN-based acoustic model consists of generation of state alignments followed by learning the network parameters. This paper first shows that the network parameters are more sensitive to the speech quality than the alignments and thus this stage requires improvement. Then, various front-end robustness approaches to addressing this problem are categorised based on functionality. The degree to which each class of approaches impacts the performance of DNN-based acoustic models is examined experimentally. Based on the results, a front-end processing pipeline is proposed for efficiently combining different classes of approaches. Using this front-end, the combined effects of different classes of approaches are further evaluated in a single distant microphone-based meeting transcription task with both speaker independent (SI) and speaker adaptive training (SAT) set-ups. By combining multiple speech enhancement results, multiple types of features, and feature transformation, the front-end shows relative performance gains of 7.24% and 9.83% in the SI and SAT scenarios, respectively, over competitive DNN-based systems using log mel-filter bank features.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.csl.2014.11.00

    Robust ASR using Support Vector Machines

    Get PDF
    The improved theoretical properties of Support Vector Machines with respect to other machine learning alternatives due to their max-margin training paradigm have led us to suggest them as a good technique for robust speech recognition. However, important shortcomings have had to be circumvented, the most important being the normalisation of the time duration of different realisations of the acoustic speech units. In this paper, we have compared two approaches in noisy environments: first, a hybrid HMM–SVM solution where a fixed number of frames is selected by means of an HMM segmentation and second, a normalisation kernel called Dynamic Time Alignment Kernel (DTAK) first introduced in Shimodaira et al. [Shimodaira, H., Noma, K., Nakai, M., Sagayama, S., 2001. Support vector machine with dynamic time-alignment kernel for speech recognition. In: Proc. Eurospeech, Aalborg, Denmark, pp. 1841–1844] and based on DTW (Dynamic Time Warping). Special attention has been paid to the adaptation of both alternatives to noisy environments, comparing two types of parameterisations and performing suitable feature normalisation operations. The results show that the DTA Kernel provides important advantages over the baseline HMM system in medium to bad noise conditions, also outperforming the results of the hybrid system.Publicad

    Modified SPLICE and its Extension to Non-Stereo Data for Noise Robust Speech Recognition

    Full text link
    In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.Comment: Submitted to Automatic Speech Recognition and Understanding (ASRU) 2013 Worksho

    Model adaptation and adaptive training for the recognition of dysarthric speech

    Get PDF
    Dysarthria is a neurological speech disorder, which exhibits multi-fold disturbances in the speech production system of an individual and can have a detrimental effect on the speech output. In addition to the data sparseness problems, dysarthric speech is characterised by inconsistencies in the acoustic space making it extremely challenging to model. This paper investigates a variety of baseline speaker independent (SI) systems and its suitability for adaptation. The study also explores the usefulness of speaker adaptive training (SAT) for implicitly annihilating inter-speaker variations in a dysarthric corpus. The paper implements a hybrid MLLR-MAP based approach to adapt the SI and SAT systems. ALL the results reported uses UASPEECH dysarthric data. Our best adapted systems gave a significant absolute gain of 11.05% (20.42% relative) over the last published best result in the literature. A statistical analysis performed across various systems and its specific implementation in modelling different dysarthric severity sub-groups, showed that, SAT-adapted systems were more applicable to handle disfluencies of more severe speech and SI systems prepared from typical speech were more apt for modelling speech with low level of severity

    Multilingual Adaptation of RNN Based ASR Systems

    Full text link
    In this work, we focus on multilingual systems based on recurrent neural networks (RNNs), trained using the Connectionist Temporal Classification (CTC) loss function. Using a multilingual set of acoustic units poses difficulties. To address this issue, we proposed Language Feature Vectors (LFVs) to train language adaptive multilingual systems. Language adaptation, in contrast to speaker adaptation, needs to be applied not only on the feature level, but also to deeper layers of the network. In this work, we therefore extended our previous approach by introducing a novel technique which we call "modulation". Based on this method, we modulated the hidden layers of RNNs using LFVs. We evaluated this approach in both full and low resource conditions, as well as for grapheme and phone based systems. Lower error rates throughout the different conditions could be achieved by the use of the modulation.Comment: 5 pages, 1 figure, to appear in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018
    corecore