3,018 research outputs found

    Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 4: Advanced fan section aerodynamic analysis

    Get PDF
    The purpose of this study is the development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates and the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The procedure was also modified to allow coarse parallelization of the solution algorithm. This document is a final report outlining the development and techniques used in the procedure. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Numerical dissipation is used to gain solution stability but is reduced in viscous dominated flow regions. Local time stepping and implicit residual smoothing are used to increase the rate of convergence. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes being generated by the system (TIGG3D) developed earlier under this contract. The grid generation scheme meets the average-passage requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. Pure internal flow solutions were obtained as well as solutions with flow about the cowl/nacelle and various engine core flow conditions. The efficiency of the solution procedure was shown to be the same as the original analysis

    A three-dimensional Navier-Stokes stage analysis of the flow through a compact radial turbine

    Get PDF
    A steady, three dimensional Navier-Stokes average passage computer code is used to analyze the flow through a compact radial turbine stage. The code is based upon the average passage set of equations for turbomachinery, whereby the flow fields for all passages in a given blade row are assumed to be identical while retaining their three-dimensionality. A stage solution is achieved by alternating between stator and rotor calculations, while coupling the two solutions by means of a set of axisymmetric body forces which model the absent blade row. Results from the stage calculation are compared with experimental data and with results from an isolated rotor solution having axisymmetric inlet flow quantities upstream of the vacated stator space. Although the mass-averaged loss through the rotor is comparable for both solutions, the details of the loss distribution differ due to stator effects. The stage calculation predicts smaller spanwise variations in efficiency, in closer agreement with the data. The results of the study indicate that stage analyses hold promise for improved prediction of loss mechanisms in multi-blade row turbomachinery, which could lead to improved designs through the reduction of these losses

    Vortex motion in axisymmetric piston-cylinder configurations

    Get PDF
    By using the Beam and Warming implicit-factored method of solution of the Navier-Stokes equations, velocities were calculated inside axisymmetric piston cylinder configurations during the intake and compression strokes. Results are presented in graphical form which show the formation, growth and breakup of those vortices which form during the intake stroke by the jet issuing from the valve. It is shown that at bore-to-stroke ratio of less than unity, the vortices may breakup during the intake stroke. It is also shown that vortices which do not breakup during the intake stroke coalesce during the compression stroke

    Numerical simulation of the flow and fuel-air mixing in an axisymmetric piston-cylinder arrangement

    Get PDF
    The implicit factored method of Beam and Warming was employed to describe the flow and the fuel-air mixing in an axisymmetric piston-cylinder configuration during the intake and compression strokes. The governing equations were established on the basis of laminar flow. The increased mixing due to turbulence was simulated by appropriately chosen effective transport properties. Calculations were performed for single-component gases and for two-component gases and for two-component gas mixtures. The flow field was calculated as functions of time and position for different geometries, piston speeds, intake-charge-to-residual-gas-pressure ratios, and species mass fractions of the intake charge. Results are presented in graphical form which show the formation, growth, and break-up of those vortices which form during the intake stroke and the mixing of fuel and air throughout the intake and compression strokes. It is shown that at bore-to-stroke ratio of less than unity, the vortices may break-up during the intake stroke. It is also shown that vortices which do not break-up during the intake stroke coalesce during the compression stroke. The results generated were compared to existing numerical solutions and to available experimental data

    Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis

    Get PDF
    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOAR\CR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This document is the final report describing the theoretical basis and analytical results from the ADPAC-AOACR codes developed under task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR Program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows

    Cold hydraulic expansion of oil well tubulars

    Get PDF
    Peer reviewedPostprin

    Thermal effects in two-phase flow through face seals

    Get PDF
    When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description

    Dynamics of face and annular seals with two-phase flow

    Get PDF
    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized

    Thermodynamic Losses in a Gas Spring: Comparison of Experimental and Numerical Results

    Get PDF
    Reciprocating-piston devices can be used as high-efficiency compressors and/or expanders. With an optimal valve design and by carefully adjusting valve timing, pressure losses during intake and exhaust can be largely reduced. The main loss mechanism in reciprocating devices is then the thermal irreversibility due to the unsteady heat transfer between the compressed/expanded gas and the surrounding cylinder walls. In this paper, pressure, volume and temperature measurements in a piston-cylinder crankshaft driven gas spring are compared to numerical results. The experimental apparatus experiences mass leakage while the CFD code predicts heat transfer in an ideal closed gas spring. Comparison of experimental and numerical results allows one to better understand the loss mechanisms in play. Heat and mass losses in the experiment are decoupled and the system losses are calculated over a range of frequencies. As expected, compression and expansion approach adiabatic processes for higher frequencies, resulting in higher efficiency. The objective of this study is to observe and explain the discrepancies obtained between the computational and experimental results and to propose further steps to improve the analysis of the loss mechanisms
    corecore