57,798 research outputs found
Photochemistry of Coordination Compounds of the Main Group Metals
A general concept is developed which relates characteristics excited states of main group metal complexes to typical photoreactions. With regard to their electronic spectra and photochemistry the main group metals are classified according to their ground state electron configuration nsxnpy. The photochemistry is generally dominated by the reactivity of metal-centered sp and ligand to metal charge transfer excited states which in most cases initiate inter- and intramolecular photoredox processes
Pulsed radiolysis of model aromatic polymers and epoxy based matrix materials
Models of primary processes leading to deactivation of energy deposited by a pulse of high energy electrons were derived for epoxy matrix materials and polyl-vinyl naphthalene. The basic conclusion is that recombination of initially formed charged states is complete within 1 nanosecond, and subsequent degradation chemistry is controlled by the reactivity of these excited states. Excited states in both systems form complexes with ground state molecules. These excimers or exciplexes have their characteristics emissive and absorptive properties and may decay to form separated pairs of ground state molecules, cross over to the triplet manifold or emit fluorescence. ESR studies and chemical analyses subsequent to pulse radiolysis were performed in order to estimate bond cleavage probabilities and net reaction rates. The energy deactivation models which were proposed to interpret these data have led to the development of radiation stabilization criteria for these systems
Recommended from our members
Monitoring excited-state relaxation in a molecular marker in live cells–a case study on astaxanthin
Small molecules are frequently used as dyes, labels and markers to visualize and probe biophysical processes within cells. However, very little is generally known about the light-driven excited-state reactivity of such systems when placed in cells. Here an experimental approach to study ps time-resolved excited state dynamics of a benchmark molecular marker, astaxanthin, in live human cells is introduced. © The Royal Society of Chemistry 2021
Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)_(3)(dppz)(py)]^(+)–DNA Constructs Monitored by Time-Resolved Visible and Infrared Spectroscopy
The complex [Re(CO)_(3)(dppz)(py′-OR)]+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine; py′-OR = 4-functionalized pyridine) offers IR sensitivity and can oxidize DNA directly from the excited state, making it a promising probe for the study of DNA-mediated charge transport (CT). The behavior of several covalent and noncovalent Re–DNA constructs was monitored by time-resolved IR (TRIR) and UV/visible spectroscopies, as well as biochemical methods, confirming the long-range oxidation of DNA by the excited complex. Optical excitation of the complex leads to population of MLCT and at least two distinct intraligand states. Experimental observations that are consistent with charge injection from these excited states include similarity between long-time TRIR spectra and the reduced state spectrum observed by spectroelectrochemistry, the appearance of a guanine radical signal in TRIR spectra, and the eventual formation of permanent guanine oxidation products. The majority of reactivity occurs on the ultrafast time scale, although processes dependent on slower conformational motions of DNA, such as the accumulation of oxidative damage at guanine, are also observed. The ability to measure events on such disparate time scales, its superior selectivity in comparison to other spectroscopic techniques, and the ability to simultaneously monitor carbonyl ligand and DNA IR absorption bands make TRIR a valuable tool for the study of CT in DNA
Luminescence and Excited-State Reactivity in a Heteroleptic Tricyanido Fe(III) Complex
Harnessing sunlight via photosensitizing molecules is key for novel optical applications and solar-to-chemical energy conversion. Exploiting abundant metals such as iron is attractive but becomes challenging due to typically fast nonradiative relaxation processes. In this work, we report on the luminescence and excited-state reactivity of the heteroleptic [FeIII(pzTp)(CN)3]− complex (pzTp = tetrakis(pyrazolyl)borate), which incorporates a σ-donating trispyrazolyl chelate ligand and three monodentate σ-donating and π-accepting cyanide ligands. Contrary to the nonemissive [Fe(CN)6]3–, a broad emission band centered at 600 nm at room temperature has been recorded for the heteroleptic analogue attributed to the radiative deactivation from a 2LMCT excited state with a luminescence quantum yield of 0.02% and a lifetime of 80 ps in chloroform at room temperature. Bimolecular reactivity of the 2LMCT excited state was successfully applied to different alcohol photo-oxidation, identifying a cyanide–H bonding as a key reaction intermediate. Finally, this research demonstrated the exciting potential of [Fe(pzTp)(CN)3]− as a photo-oxidant, paving the way for further exploration and development of emissive Fe-based photosensitizers competent for photochemical transformations
Quasiclassical Trajectory Study of the Rotational Mode Specificity in the O(P-3) + CHD3(v(1)=0, 1, JK) -> OH + CD3 Reactions
Quasiclassical trajectory computations on an ab initio potential energy surface reveal that rotational excitation can significantly enhance the reactivity of the ground-state and CH stretching-excited O(P-3) + CHD3(v1 = 0,1, JK) -> OH + CD3 reactions. The state-specific rotational effects investigated up to J = 8 show that the K = 0 (tumbling rotation) enhancement factors can be as large as 1.5-3.5 depending on J and the collision energy, whereas the K = J (spinning rotation about the CH axis) excitations do not have any significant effect on the reactivity. The shapes of the opacity functions and scattering angle distributions depend on the initial vibrational state, but show virtually no JK dependence. The origin of the K = 0 rotational enhancements is that the tumbling rotation enlarges the range of the reactive initial attack angles, thereby increasing the reactivity
- …