5 research outputs found
Spin-polarized electric currents in diluted magnetic semiconductor heterostructures induced by terahertz and microwave radiation
We report on the study of spin-polarized electric currents in diluted
magnetic semiconductor (DMS) quantum wells subjected to an in-plane external
magnetic field and illuminated by microwave or terahertz radiation. The effect
is studied in (Cd,Mn)Te/(Cd,Mg)Te quantum wells (QWs) and (In,Ga)As/InAlAs:Mn
QWs belonging to the well known II-VI and III-V DMS material systems, as well
as, in heterovalent AlSb/InAs/(Zn,Mn)Te QWs which represent a promising
combination of II-VI and III-V semiconductors. Experimental data and developed
theory demonstrate that the photocurrent originates from a spin-dependent
scattering of free carriers by static defects or phonons in the Drude
absorption of radiation and subsequent relaxation of carriers. We show that in
DMS structures the efficiency of the current generation is drastically enhanced
compared to non-magnetic semiconductors. The enhancement is caused by the
exchange interaction of carrier spins with localized spins of magnetic ions
resulting, on the one hand, in the giant Zeeman spin-splitting, and, on the
other hand, in the spin-dependent carrier scattering by localized Mn2+ ions
polarized by an external magnetic field.Comment: 14 pages, 13 figure
Semiconductor Spintronics
Spintronics refers commonly to phenomena in which the spin of electrons in a
solid state environment plays the determining role. In a more narrow sense
spintronics is an emerging research field of electronics: spintronics devices
are based on a spin control of electronics, or on an electrical and optical
control of spin or magnetism. This review presents selected themes of
semiconductor spintronics, introducing important concepts in spin transport,
spin injection, Silsbee-Johnson spin-charge coupling, and spindependent
tunneling, as well as spin relaxation and spin dynamics. The most fundamental
spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling.
Depending on the crystal symmetries of the material, as well as on the
structural properties of semiconductor based heterostructures, the spin-orbit
coupling takes on different functional forms, giving a nice playground of
effective spin-orbit Hamiltonians. The effective Hamiltonians for the most
relevant classes of materials and heterostructures are derived here from
realistic electronic band structure descriptions. Most semiconductor device
systems are still theoretical concepts, waiting for experimental
demonstrations. A review of selected proposed, and a few demonstrated devices
is presented, with detailed description of two important classes: magnetic
resonant tunnel structures and bipolar magnetic diodes and transistors. In most
cases the presentation is of tutorial style, introducing the essential
theoretical formalism at an accessible level, with case-study-like
illustrations of actual experimental results, as well as with brief reviews of
relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure
Exchange interaction of electrons with Mn in hybrid AlSb/InAs/ZnMnTe structures
Diluted magnetic semiconductor heterovalent AlSb/InAs/ZnMnTe quantum well (QW) structures with an electron channel have been designed and grown applying molecular-beam epitaxy. The enhanced magnetic properties of QWs as a result of the exchange interaction with Mn2+ ions, are proved by measuring the microwave radiation induced spin polarized electric currents