202,953 research outputs found

    Separation of Quasiparticle and Phononic Heat Currents in YBCO

    Full text link
    Measurements of the transverse (k_{xy}) and longitudinal (k_{xx}) thermal conductivity in high magnetic fields are used to separate the quasiparticle thermal conductivity (k_{xx}^{el}) of the CuO_2-planes from the phononic thermal conductivity in YBa_2Cu_3O_{7-\delta}. k_{xx}^{el} is found to display a pronounced maximum below T_c. Our data analysis reveals distinct transport (\tau) and Hall (\tau_H) relaxation times below T_c: Whereas \tau is strongly enhanced, \tau_H follows the same temperature dependence as above T_c

    Thermal Conductivity in the Bose-Einstein Condensed State of Triplons in the Bond-Alternating Spin-Chain System Pb2V3O9

    Full text link
    In order to clarify the origin of the enhancement of the thermal conductivity in the Bose-Einstein Condensed (BEC) state of field-induced triplons, we have measured the thermal conductivity along the [101] direction parallel to spin-chains, kappa∥[101]kappa_{\|[101]}, and perpendicular to spin-chains, kappa⊥[101]kappa_{\perp[101]}, of the S=1/2 bond-alternating spin-chain system Pb2V3O9 in magnetic fields up to 14 T. With increasing field at 3 K, it has been found that both kappa∥[101]kappa_{\|[101]} and kappa⊥[101]kappa_{\perp[101]} are suppressed in the gapped normal state in low fields. In the BEC state of field-induced triplons in high fields, on the other hand, kappa∥[101]kappa_{\|[101]} is enhanced with increasing field, while kappa⊥[101]kappa_{\perp[101]} is suppressed. That is, the thermal conductivity along the direction, where the magnetic interaction is strong, is markedly enhanced in the BEC state. Accordingly, our results suggest that the enhancement of kappa∥[101]kappa_{\|[101]} in the BEC state is caused by the enhancement of the thermal conductivity due to triplons on the basis of the two-fluid model, as in the case of the superfluid state of liquid 4He.Comment: 5 pages, 3 figure

    Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates

    Get PDF
    Grain refinement has been conducted to reduce the thermal conductivity and improve the thermoelectric performance of the (Zr,Hf)NiSn based half-Heusler alloys. Nanoscale in situ precipitates were found embedded in the matrix with submicron grains. The lattice thermal conductivity was decreased due to the enhanced boundary scattering of phonons. The increased carrier concentration and electrical conductivity were observed compared to the coarse-grained alloys, which is discussed in relation to the existence of nanoscale precipitates, the effect of antisite defects, and composition change. It is suggested that the nanoscale precipitates play a significant role in the observed electrical conductivity increase
    • …
    corecore