2,208,035 research outputs found

    Resonance Energy Transfer

    Get PDF
    Resonance energy transfer, also known as Förster- or fluorescence- resonance energy transfer, or electronic energy transfer, is a photonic process whose relevance in many major areas of science is reflected both by a wide prevalence of the effect and through numerous technical applications. The process, operating through an optical near-field mechanism, effects a transport of electronic excitation between physically distinct atomic or molecular components, based on transition dipole-dipole coupling. In this chapter a comprehensive survey of the process is presented, beginning with an outline of the history and highlighting the early contributions of Perrin and Förster. A review of the photophysics behind resonance energy transfer follows, and then a discussion of some prominent applications of resonance energy transfer. Particular emphasis is given to analysis and sensing techniques used in molecular biology, ranging from the ‘spectroscopic ruler’ measurements of functional group separation, to fluorescence lifetime microscopy. The chapter ends with a description of the role of energy transfer in photosynthetic light harvesting

    Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results

    Full text link
    The basic entity of nonlinear interaction in Navier-Stokes and the Magnetohydrodynamic (MHD) equations is a wavenumber triad ({\bf k,p,q}) satisfying k+p+q=0{\bf k+p+q=0}. The expression for the combined energy transfer from two of these wavenumbers to the third wavenumber is known. In this paper we introduce the idea of an effective energy transfer between a pair of modes by the mediation of the third mode, and find an expression for it. Then we apply this formalism to compute the energy transfer in the quasi-steady-state of two-dimensional MHD turbulence with large-scale kinetic forcing. The computation of energy fluxes and the energy transfer between different wavenumber shells is done using the data generated by the pseudo-spectral direct numerical simulation. The picture of energy flux that emerges is quite complex---there is a forward cascade of magnetic energy, an inverse cascade of kinetic energy, a flux of energy from the kinetic to the magnetic field, and a reverse flux which transfers the energy back to the kinetic from the magnetic. The energy transfer between different wavenumber shells is also complex---local and nonlocal transfers often possess opposing features, i.e., energy transfer between some wavenumber shells occurs from kinetic to magnetic, and between other wavenumber shells this transfer is reversed. The net transfer of energy is from kinetic to magnetic. The results obtained from the studies of flux and shell-to-shell energy transfer are consistent with each other.Comment: 27 pages REVTEX; 14 ps figure

    Optically controlled resonance energy transfer:Mechanism and configuration for all-optical switching

    Get PDF
    In a molecular system of energy donors and acceptors, resonance energy transfer is the primary mechanism by means of which electronic energy is redistributed between molecules, following the excitation of a donor. Given a suitable geometric configuration it is possible to completely inhibit this energy transfer in such a way that it can only be activated by application of an off-resonant laser beam: this is the principle of optically controlled resonance energy transfer, the basis for an all-optical switch. This paper begins with an investigation of optically controlled energy transfer between a single donor and acceptor molecule, identifying the symmetry and structural constraints and analyzing in detail the dependence on molecular energy level positioning. Spatially correlated donor and acceptor arrays with linear, square, and hexagonally structured arrangements are then assessed as potential configurations for all-optical switching. Built on quantum electrodynamical principles the concept of transfer fidelity, a parameter quantifying the efficiency of energy transportation, is introduced and defined. Results are explored by employing numerical simulations and graphical analysis. Finally, a discussion focuses on the advantages of such energy transfer based processes over all-optical switching of other proposed forms. © 2008 American Institute of Physics

    Efficiency of energy funneling in the photosystem II supercomplex of higher plants

    Full text link
    The investigation of energy transfer properties in photosynthetic multi-protein networks gives insight into their underlying design principles.Here, we discuss excitonic energy transfer mechanisms of the photosystem II (PS-II) C2_2S2_2M2_2 supercomplex, which is the largest isolated functional unit of the photosynthetic apparatus of higher plants.Despite the lack of a decisive energy gradient in C2_2S2_2M2_2, we show that the energy transfer is directed by relaxation to low energy states. C2_2S2_2M2_2 is not organized to form pathways with strict energetic downhill transfer, which has direct consequences on the transfer efficiency, transfer pathways and transfer limiting steps. The exciton dynamics is sensitive to small structural changes, which, for instance, are induced by the reorganization of vibrational coordinates. In order to incorporate the reorganization process in our numerical simulations, we go beyond rate equations and use the hierarchically coupled equation of motion approach (HEOM). While transfer from the peripherical antenna to the proteins in proximity to the reaction center occurs on a faster time scale, the final step of the energy transfer to the RC core is rather slow, and thus the limiting step in the transfer chain. Our findings suggest that the structure of the PS-II supercomplex guarantees photoprotection rather than optimized efficiency.Comment: 23 pages, 6 figure

    A probability current analysis of energy transport in open quantum systems

    Get PDF
    We introduce a probability current analysis of excitation energy transfer between states of an open quantum system. Expressing the energy transfer through currents of excitation probability between the states in a site representation enables us to gain key insights into the energy transfer dynamics. It allows to, i) identify the pathways of energy transport in large networks of sites and to quantify their relative weights, ii) quantify the respective contributions of unitary dynamics, dephasing, and relaxation/dissipation processes to the energy transfer, and iii) quantify the contribution of coherence to the energy transfer. Our analysis is general and can be applied to a broad range of open quantum system descriptions (with coupling to non-Markovian environments) in a straightforward manner
    • …
    corecore