1,036 research outputs found

    Electric-magnetic asymmetry of the A^2 condensate and the phases of Yang-Mills theory

    Full text link
    We study the finite-temperature behavior of the A^2 condensate in the Landau gauge of SU(2) Yang--Mills theory on the lattice in a wide range of temperatures. The asymmetry between the electric (temporal) and magnetic (spatial) components of this unconventional dimension-2 condensate is a convenient ultraviolet-finite quantity which possesses, as we demonstrate, unexpected properties. The low-temperature behavior of the condensate asymmetry suggests that the mass of the lowest thermal excitation in the condensate is unexpectedly low, about 200 MeV, which is much smaller than the glueball mass. The asymmetry is peaking at the phase transition, becoming a monotonically decreasing function in the deconfinement phase. A symmetric point is reached in the deconfinement phase at a temperature approximately equal twice the critical temperature. The behavior of the electric-magnetic asymmetry of the condensate separates the phase diagram of Yang-Mills theory into three regions. We suggest that these regions are associated with the condensed, liquid and gaseous states of the confining gluonic objects, the Abelian monopoles.Comment: 13 pages, 5 figures, RevTeX 4.0; revision: minor changes, references added, published versio

    Understanding Confinement in QCD: Elements of a Big Picture

    Full text link
    I give a brief review of advances in the strong interaction theory. This talk was delivered at the Conference in honor of Murray Gell-Mann's 80th birthday, 24-26 February 2010, Singapore.Comment: I give a brief review of advances in the strong interaction theory. This talk was delivered at the Conference in honor of Murray Gell-Mann's 80th birthday, 24-26 February 2010, Singapor

    Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)

    Full text link
    We study a gauge invariant order parameter for deconfinement and the chiral condensate in SU(2) and SU(3) Yang-Mills theory in the vicinity of the deconfinement phase transition using the Landau gauge quark and gluon propagators. We determine the gluon propagator from lattice calculations and the quark propagator from its Dyson-Schwinger equation, using the gluon propagator as input. The critical temperature and a deconfinement order parameter are extracted from the gluon propagator and from the dependency of the quark propagator on the temporal boundary conditions. The chiral transition is determined using the quark condensate as order parameter. We investigate whether and how a difference in the chiral and deconfinement transition between SU(2) and SU(3) is manifest.Comment: 15 pages, 9 figures. For clarification one paragraph and two references added in the introduction and two sentences at the end of the first and last paragraph of the summary. Appeared in EPJ

    Numerical evidence of chiral magnetic effect in lattice gauge theory

    Full text link
    The chiral magnetic effect is the generation of electric current of quarks along external magnetic field in the background of topologically nontrivial gluon fields. There is a recent evidence that this effect is observed by the STAR Collaboration in heavy ion collisions at RHIC. In our paper we study qualitative signatures of the chiral magnetic effect using quenched lattice simulations. We find indications that the electric current is indeed enhanced in the direction of the magnetic field both in equilibrium configurations of the quantum gluon fields and in a smooth gluon background with nonzero topological charge. In the confinement phase the magnetic field enhances the local fluctuations of both the electric charge and chiral charge densities. In the deconfinement phase the effects of the magnetic field become smaller, possibly due to thermal screening. Using a simple model of a fireball we obtain a good agreement between our data and experimental results of the STAR Collaboration.Comment: 14 pages, 14 figures, uses RevTeX 4.0; revision: references and comments added, figures corrected, published versio

    Electroweak Symmetry Breaking From Monopole Condensation

    Full text link
    We examine models where massless chiral fermions with both "electric" and "magnetic" hypercharges could form condensates. When some of the fermions are also electroweak doublets such condensates can break the electroweak gauge symmetry down to electromagnetism in the correct way. Since ordinary hypercharge is weakly coupled at the TeV scale, magnetic hypercharge is strongly coupled and can potentially drive the condensation. Such models are similar to technicolor, but with hypercharge playing the role of the technicolor gauge group, so the standard model gauge group breaks itself. A heavy top mass can be generated via the Rubakov-Callan effect and could thus decouple the scale of flavor physics from the electroweak scale.Comment: Absence of pseudo-Goldstone bosons explain, discussion of the role of flavor physics clarified, other minor changes. References adde

    SU(2,CMB), the nature of light and acceleratedcosmological expansion

    Get PDF
    We present quantitative and qualitative arguments in favor of the claim that, within the present cosmological epoch, the U(1)gamma factor in the Standard Model is an effective manifestation of SU(2) pure gauge dynamics of Yang-Mills scale Lambda ~ 10^-4 eV. Results for the pressure and the energy density in the deconfining phase of this theory, obtained in a nonperturbative and analytical way, support this connection in view of large-angle features inherent in the map of the CMB temperature fluctuations and temperature-polarization cross correlations
    corecore