9,519 research outputs found

    Mermin's Suggestion and the Nature of Bohr's Action-at-a-Distance Influence

    Get PDF
    Mermin suggests comparing my recent proof of quantum nonlocality to Bohr's reply to Einstein, Podolsky, and Rosen. Doing so leads naturally to the insight that the nonlocal influence deduced from the analysis of the Hardy experiment is the same as the nonlocal influence deduced by Bohr, and used by him to block the application of the criterion of physical reality proposed by Einstein, Podolsky, and Rosen. However, the greater sophistication of the Hardy experiment, as contrasted to the experiment considered by Bohr and the three authors, exposes more clearly than before the nature of this influence, and thereby strengthens Bohr's position.Comment: 7page

    Einstein–Podolsky–Rosen–Bohm experiments:A discrete data driven approach

    Get PDF
    We take the point of view that building a one-way bridge from experimental data to mathematical models instead of the other way around avoids running into controversies resulting from attaching meaning to the symbols used in the latter. In particular, we show that adopting this view offers new perspectives for constructing mathematical models for and interpreting the results of Einstein–Podolsky–Rosen–Bohm experiments. We first prove new Bell-type inequalities constraining the values of the four correlations obtained by performing Einstein–Podolsky–Rosen–Bohm experiments under four different conditions. The proof is “model-free” in the sense that it does not refer to any mathematical model that one imagines to have produced the data. The constraints only depend on the number of quadruples obtained by reshuffling the data in the four data sets without changing the values of the correlations. These new inequalities reduce to model-free versions of the well-known Bell-type inequalities if the maximum fraction of quadruples is equal to one. Being model-free, a violation of the latter by experimental data implies that not all the data in the four data sets can be reshuffled to form quadruples. Furthermore, being model-free inequalities, a violation of the latter by experimental data only implies that any mathematical model assumed to produce this data does not apply. Starting from the data obtained by performing Einstein–Podolsky–Rosen–Bohm experiments, we construct instead of postulate mathematical models that describe the main features of these data. The mathematical framework of plausible reasoning is applied to reproducible and robust data, yielding without using any concept of quantum theory, the expression of the correlation for a system of two spin-1/2 objects in the singlet state. Next, we apply Bell's theorem to the Stern–Gerlach experiment and demonstrate how the requirement of separability leads to the quantum-theoretical description of the averages and correlations obtained from an Einstein–Podolsky–Rosen–Bohm experiment. We analyze the data of an Einstein–Podolsky–Rosen–Bohm experiment and debunk the popular statement that Einstein–Podolsky–Rosen–Bohm experiments have vindicated quantum theory. We argue that it is not quantum theory but the processing of data from EPRB experiments that should be questioned. We perform Einstein–Podolsky–Rosen–Bohm experiments on a superconducting quantum information processor to show that the event-by-event generation of discrete data can yield results that are in good agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment. We demonstrate that a stochastic and a subquantum model can also produce data that are in excellent agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment.</p

    Einstein–Podolsky–Rosen–Bohm experiments:A discrete data driven approach

    Get PDF
    We take the point of view that building a one-way bridge from experimental data to mathematical models instead of the other way around avoids running into controversies resulting from attaching meaning to the symbols used in the latter. In particular, we show that adopting this view offers new perspectives for constructing mathematical models for and interpreting the results of Einstein–Podolsky–Rosen–Bohm experiments. We first prove new Bell-type inequalities constraining the values of the four correlations obtained by performing Einstein–Podolsky–Rosen–Bohm experiments under four different conditions. The proof is “model-free” in the sense that it does not refer to any mathematical model that one imagines to have produced the data. The constraints only depend on the number of quadruples obtained by reshuffling the data in the four data sets without changing the values of the correlations. These new inequalities reduce to model-free versions of the well-known Bell-type inequalities if the maximum fraction of quadruples is equal to one. Being model-free, a violation of the latter by experimental data implies that not all the data in the four data sets can be reshuffled to form quadruples. Furthermore, being model-free inequalities, a violation of the latter by experimental data only implies that any mathematical model assumed to produce this data does not apply. Starting from the data obtained by performing Einstein–Podolsky–Rosen–Bohm experiments, we construct instead of postulate mathematical models that describe the main features of these data. The mathematical framework of plausible reasoning is applied to reproducible and robust data, yielding without using any concept of quantum theory, the expression of the correlation for a system of two spin-1/2 objects in the singlet state. Next, we apply Bell's theorem to the Stern–Gerlach experiment and demonstrate how the requirement of separability leads to the quantum-theoretical description of the averages and correlations obtained from an Einstein–Podolsky–Rosen–Bohm experiment. We analyze the data of an Einstein–Podolsky–Rosen–Bohm experiment and debunk the popular statement that Einstein–Podolsky–Rosen–Bohm experiments have vindicated quantum theory. We argue that it is not quantum theory but the processing of data from EPRB experiments that should be questioned. We perform Einstein–Podolsky–Rosen–Bohm experiments on a superconducting quantum information processor to show that the event-by-event generation of discrete data can yield results that are in good agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment. We demonstrate that a stochastic and a subquantum model can also produce data that are in excellent agreement with the quantum-theoretical description of the Einstein–Podolsky–Rosen–Bohm thought experiment.</p

    Einstein-Podolsky-Rosen correlations from colliding Bose-Einstein condensates

    Full text link
    We propose an experiment which can demonstrate quantum correlations in a physical scenario as discussed in the seminal work of Einstein, Podolsky and Rosen. Momentum-entangled massive particles are produced via the four-wave mixing process of two colliding Bose-Einstein condensates. The particles' quantum correlations can be shown in a double double-slit experiment or via ghost interference.Comment: 5 pages, 5 figures, published versio

    Communication cost of breaking the Bell barrier

    Full text link
    Correlations in an Einstein-Podolsky-Rosen-Bohm experiment can be made stronger than quantum correlations by allowing a single bit of classical communication between the two sides of the experiment.Comment: One new reference referring to a maximal algebraic violation of the Clauser-Horne-Shimony-Holt (CHSH) inequalit
    • …
    corecore