35,383 research outputs found
Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges
Participatory sensing is a powerful paradigm which takes advantage of
smartphones to collect and analyze data beyond the scale of what was previously
possible. Given that participatory sensing systems rely completely on the
users' willingness to submit up-to-date and accurate information, it is
paramount to effectively incentivize users' active and reliable participation.
In this paper, we survey existing literature on incentive mechanisms for
participatory sensing systems. In particular, we present a taxonomy of existing
incentive mechanisms for participatory sensing systems, which are subsequently
discussed in depth by comparing and contrasting different approaches. Finally,
we discuss an agenda of open research challenges in incentivizing users in
participatory sensing.Comment: Updated version, 4/25/201
Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability
Internet-of-Things (IoT) envisions an intelligent infrastructure of networked
smart devices offering task-specific monitoring and control services. The
unique features of IoT include extreme heterogeneity, massive number of
devices, and unpredictable dynamics partially due to human interaction. These
call for foundational innovations in network design and management. Ideally, it
should allow efficient adaptation to changing environments, and low-cost
implementation scalable to massive number of devices, subject to stringent
latency constraints. To this end, the overarching goal of this paper is to
outline a unified framework for online learning and management policies in IoT
through joint advances in communication, networking, learning, and
optimization. From the network architecture vantage point, the unified
framework leverages a promising fog architecture that enables smart devices to
have proximity access to cloud functionalities at the network edge, along the
cloud-to-things continuum. From the algorithmic perspective, key innovations
target online approaches adaptive to different degrees of nonstationarity in
IoT dynamics, and their scalable model-free implementation under limited
feedback that motivates blind or bandit approaches. The proposed framework
aspires to offer a stepping stone that leads to systematic designs and analysis
of task-specific learning and management schemes for IoT, along with a host of
new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive
and Scalable Communication Network
Quality of Information in Mobile Crowdsensing: Survey and Research Challenges
Smartphones have become the most pervasive devices in people's lives, and are
clearly transforming the way we live and perceive technology. Today's
smartphones benefit from almost ubiquitous Internet connectivity and come
equipped with a plethora of inexpensive yet powerful embedded sensors, such as
accelerometer, gyroscope, microphone, and camera. This unique combination has
enabled revolutionary applications based on the mobile crowdsensing paradigm,
such as real-time road traffic monitoring, air and noise pollution, crime
control, and wildlife monitoring, just to name a few. Differently from prior
sensing paradigms, humans are now the primary actors of the sensing process,
since they become fundamental in retrieving reliable and up-to-date information
about the event being monitored. As humans may behave unreliably or
maliciously, assessing and guaranteeing Quality of Information (QoI) becomes
more important than ever. In this paper, we provide a new framework for
defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the
current state-of-the-art on the topic. We also outline novel research
challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
Future wireless networks have a substantial potential in terms of supporting
a broad range of complex compelling applications both in military and civilian
fields, where the users are able to enjoy high-rate, low-latency, low-cost and
reliable information services. Achieving this ambitious goal requires new radio
techniques for adaptive learning and intelligent decision making because of the
complex heterogeneous nature of the network structures and wireless services.
Machine learning (ML) algorithms have great success in supporting big data
analytics, efficient parameter estimation and interactive decision making.
Hence, in this article, we review the thirty-year history of ML by elaborating
on supervised learning, unsupervised learning, reinforcement learning and deep
learning. Furthermore, we investigate their employment in the compelling
applications of wireless networks, including heterogeneous networks (HetNets),
cognitive radios (CR), Internet of things (IoT), machine to machine networks
(M2M), and so on. This article aims for assisting the readers in clarifying the
motivation and methodology of the various ML algorithms, so as to invoke them
for hitherto unexplored services as well as scenarios of future wireless
networks.Comment: 46 pages, 22 fig
Will SDN be part of 5G?
For many, this is no longer a valid question and the case is considered
settled with SDN/NFV (Software Defined Networking/Network Function
Virtualization) providing the inevitable innovation enablers solving many
outstanding management issues regarding 5G. However, given the monumental task
of softwarization of radio access network (RAN) while 5G is just around the
corner and some companies have started unveiling their 5G equipment already,
the concern is very realistic that we may only see some point solutions
involving SDN technology instead of a fully SDN-enabled RAN. This survey paper
identifies all important obstacles in the way and looks at the state of the art
of the relevant solutions. This survey is different from the previous surveys
on SDN-based RAN as it focuses on the salient problems and discusses solutions
proposed within and outside SDN literature. Our main focus is on fronthaul,
backward compatibility, supposedly disruptive nature of SDN deployment,
business cases and monetization of SDN related upgrades, latency of general
purpose processors (GPP), and additional security vulnerabilities,
softwarization brings along to the RAN. We have also provided a summary of the
architectural developments in SDN-based RAN landscape as not all work can be
covered under the focused issues. This paper provides a comprehensive survey on
the state of the art of SDN-based RAN and clearly points out the gaps in the
technology.Comment: 33 pages, 10 figure
Mean-Field-Type Games in Engineering
A mean-field-type game is a game in which the instantaneous payoffs and/or
the state dynamics functions involve not only the state and the action profile
but also the joint distributions of state-action pairs. This article presents
some engineering applications of mean-field-type games including road traffic
networks, multi-level building evacuation, millimeter wave wireless
communications, distributed power networks, virus spread over networks, virtual
machine resource management in cloud networks, synchronization of oscillators,
energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201
- …