13,348 research outputs found

    Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers

    Full text link
    A massive gap exists between current quantum computing (QC) prototypes, and the size and scale required for many proposed QC algorithms. Current QC implementations are prone to noise and variability which affect their reliability, and yet with less than 80 quantum bits (qubits) total, they are too resource-constrained to implement error correction. The term Noisy Intermediate-Scale Quantum (NISQ) refers to these current and near-term systems of 1000 qubits or less. Given NISQ's severe resource constraints, low reliability, and high variability in physical characteristics such as coherence time or error rates, it is of pressing importance to map computations onto them in ways that use resources efficiently and maximize the likelihood of successful runs. This paper proposes and evaluates backend compiler approaches to map and optimize high-level QC programs to execute with high reliability on NISQ systems with diverse hardware characteristics. Our techniques all start from an LLVM intermediate representation of the quantum program (such as would be generated from high-level QC languages like Scaffold) and generate QC executables runnable on the IBM Q public QC machine. We then use this framework to implement and evaluate several optimal and heuristic mapping methods. These methods vary in how they account for the availability of dynamic machine calibration data, the relative importance of various noise parameters, the different possible routing strategies, and the relative importance of compile-time scalability versus runtime success. Using real-system measurements, we show that fine grained spatial and temporal variations in hardware parameters can be exploited to obtain an average 2.92.9x (and up to 1818x) improvement in program success rate over the industry standard IBM Qiskit compiler.Comment: To appear in ASPLOS'1

    Energy-Efficient Flow Scheduling and Routing with Hard Deadlines in Data Center Networks

    Full text link
    The power consumption of enormous network devices in data centers has emerged as a big concern to data center operators. Despite many traffic-engineering-based solutions, very little attention has been paid on performance-guaranteed energy saving schemes. In this paper, we propose a novel energy-saving model for data center networks by scheduling and routing "deadline-constrained flows" where the transmission of every flow has to be accomplished before a rigorous deadline, being the most critical requirement in production data center networks. Based on speed scaling and power-down energy saving strategies for network devices, we aim to explore the most energy efficient way of scheduling and routing flows on the network, as well as determining the transmission speed for every flow. We consider two general versions of the problem. For the version of only flow scheduling where routes of flows are pre-given, we show that it can be solved polynomially and we develop an optimal combinatorial algorithm for it. For the version of joint flow scheduling and routing, we prove that it is strongly NP-hard and cannot have a Fully Polynomial-Time Approximation Scheme (FPTAS) unless P=NP. Based on a relaxation and randomized rounding technique, we provide an efficient approximation algorithm which can guarantee a provable performance ratio with respect to a polynomial of the total number of flows.Comment: 11 pages, accepted by ICDCS'1

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore