13,348 research outputs found
Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers
A massive gap exists between current quantum computing (QC) prototypes, and
the size and scale required for many proposed QC algorithms. Current QC
implementations are prone to noise and variability which affect their
reliability, and yet with less than 80 quantum bits (qubits) total, they are
too resource-constrained to implement error correction. The term Noisy
Intermediate-Scale Quantum (NISQ) refers to these current and near-term systems
of 1000 qubits or less. Given NISQ's severe resource constraints, low
reliability, and high variability in physical characteristics such as coherence
time or error rates, it is of pressing importance to map computations onto them
in ways that use resources efficiently and maximize the likelihood of
successful runs.
This paper proposes and evaluates backend compiler approaches to map and
optimize high-level QC programs to execute with high reliability on NISQ
systems with diverse hardware characteristics. Our techniques all start from an
LLVM intermediate representation of the quantum program (such as would be
generated from high-level QC languages like Scaffold) and generate QC
executables runnable on the IBM Q public QC machine. We then use this framework
to implement and evaluate several optimal and heuristic mapping methods. These
methods vary in how they account for the availability of dynamic machine
calibration data, the relative importance of various noise parameters, the
different possible routing strategies, and the relative importance of
compile-time scalability versus runtime success. Using real-system
measurements, we show that fine grained spatial and temporal variations in
hardware parameters can be exploited to obtain an average x (and up to
x) improvement in program success rate over the industry standard IBM
Qiskit compiler.Comment: To appear in ASPLOS'1
Energy-Efficient Flow Scheduling and Routing with Hard Deadlines in Data Center Networks
The power consumption of enormous network devices in data centers has emerged
as a big concern to data center operators. Despite many
traffic-engineering-based solutions, very little attention has been paid on
performance-guaranteed energy saving schemes. In this paper, we propose a novel
energy-saving model for data center networks by scheduling and routing
"deadline-constrained flows" where the transmission of every flow has to be
accomplished before a rigorous deadline, being the most critical requirement in
production data center networks. Based on speed scaling and power-down energy
saving strategies for network devices, we aim to explore the most energy
efficient way of scheduling and routing flows on the network, as well as
determining the transmission speed for every flow. We consider two general
versions of the problem. For the version of only flow scheduling where routes
of flows are pre-given, we show that it can be solved polynomially and we
develop an optimal combinatorial algorithm for it. For the version of joint
flow scheduling and routing, we prove that it is strongly NP-hard and cannot
have a Fully Polynomial-Time Approximation Scheme (FPTAS) unless P=NP. Based on
a relaxation and randomized rounding technique, we provide an efficient
approximation algorithm which can guarantee a provable performance ratio with
respect to a polynomial of the total number of flows.Comment: 11 pages, accepted by ICDCS'1
Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results
Fixed and mobile telecom operators, enterprise network operators and cloud
providers strive to face the challenging demands coming from the evolution of
IP networks (e.g. huge bandwidth requirements, integration of billions of
devices and millions of services in the cloud). Proposed in the early 2010s,
Segment Routing (SR) architecture helps face these challenging demands, and it
is currently being adopted and deployed. SR architecture is based on the
concept of source routing and has interesting scalability properties, as it
dramatically reduces the amount of state information to be configured in the
core nodes to support complex services. SR architecture was first implemented
with the MPLS dataplane and then, quite recently, with the IPv6 dataplane
(SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering
of packets across nodes to a general network programming approach, making it
very suitable for use cases such as Service Function Chaining and Network
Function Virtualization. In this paper we present a tutorial and a
comprehensive survey on SR technology, analyzing standardization efforts,
patents, research activities and implementation results. We start with an
introduction on the motivations for Segment Routing and an overview of its
evolution and standardization. Then, we provide a tutorial on Segment Routing
technology, with a focus on the novel SRv6 solution. We discuss the
standardization efforts and the patents providing details on the most important
documents and mentioning other ongoing activities. We then thoroughly analyze
research activities according to a taxonomy. We have identified 8 main
categories during our analysis of the current state of play: Monitoring,
Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path
Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL
Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey
Wireless sensor networks (WSNs) consist of autonomous and resource-limited
devices. The devices cooperate to monitor one or more physical phenomena within
an area of interest. WSNs operate as stochastic systems because of randomness
in the monitored environments. For long service time and low maintenance cost,
WSNs require adaptive and robust methods to address data exchange, topology
formulation, resource and power optimization, sensing coverage and object
detection, and security challenges. In these problems, sensor nodes are to make
optimized decisions from a set of accessible strategies to achieve design
goals. This survey reviews numerous applications of the Markov decision process
(MDP) framework, a powerful decision-making tool to develop adaptive algorithms
and protocols for WSNs. Furthermore, various solution methods are discussed and
compared to serve as a guide for using MDPs in WSNs
Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
Future wireless networks have a substantial potential in terms of supporting
a broad range of complex compelling applications both in military and civilian
fields, where the users are able to enjoy high-rate, low-latency, low-cost and
reliable information services. Achieving this ambitious goal requires new radio
techniques for adaptive learning and intelligent decision making because of the
complex heterogeneous nature of the network structures and wireless services.
Machine learning (ML) algorithms have great success in supporting big data
analytics, efficient parameter estimation and interactive decision making.
Hence, in this article, we review the thirty-year history of ML by elaborating
on supervised learning, unsupervised learning, reinforcement learning and deep
learning. Furthermore, we investigate their employment in the compelling
applications of wireless networks, including heterogeneous networks (HetNets),
cognitive radios (CR), Internet of things (IoT), machine to machine networks
(M2M), and so on. This article aims for assisting the readers in clarifying the
motivation and methodology of the various ML algorithms, so as to invoke them
for hitherto unexplored services as well as scenarios of future wireless
networks.Comment: 46 pages, 22 fig
- …