524 research outputs found
Dynamical Multi-body Gyroscopic Motion Simulation
In this paper, the motion of a three-degree-of-freedom gyro scope is analyzed in three different force scenarios. The equations of motion for the gyroscope are derived by hand as well as derived by the dynamical analysis software, Autolev These equations are compared with each other to show the consistency between the two methods and the time savings of using software applications for analyzing complex multi-body dynamical systems. The Autolev™ program drastically reduced the workload for determining the motion equations and the program even compiled Matlab code that was used to produce numerical values to show the respective motion of each gyro scope component. The results from the Autolev code represent the expected rotational motion as well as some much unexpected rockingin the outer and inner gimbals when the inner rotor spun slowly enough. The overall results show the benefits of using Kane\u27s equation and Autolev software for computer simulation of dynamic behaviors of a three-degree-of freedom gyroscope. The results provide the first-hand experience for undergraduate research in the area of computational multi-body dynamics
Predictive monitoring research: Summary of the PREMON system
Traditional approaches to monitoring are proving inadequate in the face of two important issues: the dynamic adjustment of expectations about sensor values when the behavior of the device is too complex to enumerate beforehand, and the selective but effective interpretation of sensor readings when the number of sensors becomes overwhelming. This system addresses these issues by building an explicit model of a device and applying common-sense theories of physics to model causality in the device. The resulting causal simulation of the device supports planning decisions about how to efficiently yet reliably utilize a limited number of sensors to verify correct operation of the device
The Mill Wheel Drive Dynamic Simuation
Tato práce se zabývá analýzou a zkoumáním mechanismu mlecího kola, zařízení, které využívá hydrodynamickou spojku k přenosu výkonu z motoru na mlecí kolo. Mechanismus je navržen tak, aby se spojka postupně plnila olejem, dokud nedosáhne pracovních otáček, což jí umožňuje plynulé zapínání a účinný přenos výkonu. Tento proces však představuje problém, protože rychlost, kterou lze spojku naplnit, je omezena faktory jakými jsou například výkon či charakteristika motoru.
Pro řešení tohoto problému práce navrhuje řešení, které zahrnuje použití numerické integrace pohybových rovnic pro určení optimální rychlosti, při které může proces plnění probíhat. Konkrétně jsou pohybové rovnice řídícího mechanismu diskretizovány a řešeny numericky pomocí počítačového programu napsaného v jazyce Visual Basic. Program používá velikost integračního kroku, kterou lze měnit, aby byla zajištěna přesnost, a automatizuje iterace výpočtů od nulového po maximální naplnění hydrodynamické spojky.
Počáteční výsledky získané tímto postupem se pak dále optimalizují pomocí zmíněného programu, který se opakovaně používá k určení minimální doby plnění hydrodynamické spojky. Tento přístup poskytuje automatizované řešení problému, které se vyhýbá nutnosti ručních výpočtů.
Celkově je cílem této studie poskytnout náhled na rychlost, s jakou lze hydrodynamickou spojku plnit, a nabídnout praktický přístup k optimalizaci tohoto procesu. Automatizací výpočtů a zkoumáním vlivu různých parametrů chce práce přispět k hlubšímu pochopení mechanismu mlecího kola a poskytnout informace pro návrh účinnějších a efektivnějších systémů přenosu výkonu.This thesis deals with the analysis and investigation of the mill wheel mechanism, a device that uses a hydrodynamic clutch to transfer power from the motor to the grinding wheel. The mechanism is designed to gradually fill the clutch with oil until it reaches operating speed, allowing it to engage smoothly and transfer power efficiently. However, this process presents a problem because the speed at which the clutch can be filled is limited by factors such as power or engine characteristics.
To address this problem, the thesis proposes a solution that involves the use of numerical integration of the equations of motion to determine the optimum speed at which the filling process can take place. Specifically, the equations of motion of the control mechanism are discretized and solved numerically using a computer program written in Visual Basic. The program uses an integration step size that can be varied to ensure accuracy and automates iterations of the calculations from zero to maximum filling of the hydrodynamic coupling.
The initial results obtained from this procedure are then further optimised using the aforementioned program, which is repeatedly used to determine the minimum filling time of the hydrodynamic coupling. This approach provides an automated solution to the problem that avoids the need for manual calculations.
Overall, the aim of this study is to provide insight into the rate at which a hydrodynamic clutch can be filled and to offer a practical approach to optimising this process. By automating the calculations and investigating the influence of various parameters, the work aims to contribute to a deeper understanding of the grinding wheel mechanism and provide information for the design of more efficient and effective power transmission systems.330 - Katedra aplikované mechanikyvýborn
Image based visual servoing using algebraic curves applied to shape alignment
Visual servoing schemes generally employ various image features (points, lines, moments etc.) in their control formulation. This paper presents a novel method for using boundary information in visual servoing. Object boundaries are
modeled by algebraic equations and decomposed as a unique sum of product of lines. We propose that these lines can be used to extract useful features for visual servoing purposes. In this paper, intersection of these lines are used as point features in visual servoing. Simulations are performed with a 6 DOF Puma
560 robot using Matlab Robotics Toolbox for the alignment of a free-form object. Also, experiments are realized with a 2 DOF SCARA direct drive robot. Both simulation and experimental results are quite promising and show potential of our new method
Extending Continuum Models for Atom Probe Simulation
This work describes extensions to existing level-set algorithms developed for
application within the field of Atom Probe Tomography (APT). We present a new
simulation tool for the simulation of 3D tomographic volumes, using advanced
level set methods. By combining narrow-band, B-Tree and particle-tracing
approaches from level-set methods, we demonstrate a practical tool for
simulating shape changes to APT samples under applied electrostatic fields, in
three dimensions. This work builds upon our previous studies by allowing for
non-axially symmetric solutions, with minimal loss in computational speed,
whilst retaining numerical accuracy
Finding Shortest Path using Dijkstra in Live Traffic Simuation
These days, a few online administrations give live activity information, for example, Google-Map, Navteq , INRIX Traffic Information Provider , and TomTom NV. Yet at the same time figuring the most limited way on live movement is enormous issue. This is critical for auto route as it helps drivers to decide. In displayed approach server will gather live activity data and afterward declare them over remote system. With this approach any number of customers can be included. This new approach called live movement file time dependant (LTI-TD) empowers drivers to upgrade their briefest way come about by accepting just a little division of the file. The current frameworks were infeasible to tackle the issue because of their restrictive upkeep time and extensive transmission overhead. LTI-TD is a novel answer for Online Shortest Path Computation on Time Dependent Network
A time dependent performance model for multihop wireless networks with CBR traffic
In this paper, we develop a performance modeling technique for analyzing the time varying network layer queueing behavior of multihop wireless networks with constant bit rate traffic. Our approach is a hybrid of fluid flow queueing modeling and a time varying connectivity matrix. Network queues are modeled using fluid-flow based differential equation models which are solved using numerical methods, while node mobility is modeled using deterministic or stochastic modeling of adjacency matrix elements. Numerical and simulation experiments show that the new approach can provide reasonably accurate results with significant improvements in the computation time compared to standard simulation tools. © 2010 IEEE
- …