2,503 research outputs found

    Double-Diffusive Convection

    Full text link
    Much progress has recently been made in understanding and quantifying vertical mixing induced by double-diffusive instabilities such as fingering convection (usually called thermohaline convection) and oscillatory double-diffusive convection (a process closely related to semiconvection). This was prompted in parts by advances in supercomputing, which allow us to run Direct Numerical Simulations of these processes at parameter values approaching those relevant in stellar interiors, and in parts by recent theoretical developments in oceanography where such instabilities also occur. In this paper I summarize these recent findings, and propose new mixing parametrizations for both processes that can easily be implemented in stellar evolution codes.Comment: To be published in the proceedings of the conference "New Advances in Stellar Physics: from microscopic to macroscopic processes", Roscoff, 27-31st May 201

    Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

    Get PDF
    Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes to parameterize small-scale transport. The theory recovers the intrusive instability, the collective instability, and the gamma-instability as limiting cases. We find that the fastest-growing large-scale mode depends sensitively on the ratio of the background gradients of temperature and salinity (the density ratio). While only intrusive modes exist at high density ratios, the collective and gamma-instabilities dominate the system at the low density ratios where staircases are typically observed. We conclude by discussing our findings in the context of staircase formation theory.Comment: 23 pages, 9 figures, submitted to JF

    Double-diffusive convection in a rotating cylindrical annulus with conical caps

    Full text link
    Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating cylindrical annulus with conical caps is considered with the aim to establish whether a small fraction of compositional buoyancy added to the thermal buoyancy (or vice versa) can significantly reduce the critical Rayleigh number and amplify convection in planetary cores. It is shown that the neutral surface describing the onset of convection in the double-buoyancy case is essentially different from that of the well-studied purely thermal case, and does indeed allow the possibility of low-Rayleigh number convection. In particular, isolated islands of instability are formed by an additional "double-diffusive" eigenmode in certain regions of the parameter space. However, the amplitude of such low-Rayleigh number convection is relatively weak. At similar flow amplitudes purely compositional and double-diffusive cases are characterized by a stronger time dependence compared to purely thermal cases, and by a prograde mean zonal flow near the inner cylindrical surface. Implications of the results for planetary core convection are briefly discussed.Comment: Accepted for publication in Physics of the Earth and Planetary Interiors on 20 April 201

    Double-diffusive erosion of the core of Jupiter

    Get PDF
    We present Direct Numerical Simulations of the transport of heat and heavy elements across a double-diffusive interface or a double-diffusive staircase, in conditions that are close to those one may expect to find near the boundary between the heavy-element rich core and the hydrogen-helium envelope of giant planets such as Jupiter. We find that the non-dimensional ratio of the buoyancy flux associated with heavy element transport to the buoyancy flux associated with heat transport lies roughly between 0.5 and 1, which is much larger than previous estimates derived by analogy with geophysical double-diffusive convection. Using these results in combination with a core-erosion model proposed by Guillot et al. (2004), we find that the entire core of Jupiter would be eroded within less than 1Myr assuming that the core-envelope boundary is composed of a single interface. We also propose an alternative model that is more appropriate in the presence of a well-established double-diffusive staircase, and find that in this limit a large fraction of the core could be preserved. These findings are interesting in the context of Juno's recent results, but call for further modeling efforts to better understand the process of core erosion from first principles.Comment: Accepted for publication in Ap

    Direct Numerical Simulation of 3D Salt Fingers: From Secondary Instability to Chaotic Convection

    Get PDF
    The amplification and equilibration of three-dimensional salt fingers in unbounded uniform vertical gradients of temperature and salinity is modeled with a Direct Numerical Simulation in a triply periodic computational domain. A fluid dynamics video of the simulation shows that the secondary instability of the fastest growing square-planform finger mode is a combination of the well-known vertical shear instability of two-dimensional fingers [Holyer, 1984] and a new horizontal shear mode.Comment: APS DFD Gallery of Fluid Motion 200

    Homoclinic snaking of localized states in doubly diffusive convection

    Get PDF
    Numerical continuation is used to investigate stationary spatially localized states in two-dimensional thermosolutal convection in a plane horizontal layer with no-slip boundary conditions at top and bottom. Convectons in the form of 1-pulse and 2-pulse states of both odd and even parity exhibit homoclinic snaking in a common Rayleigh number regime. In contrast to similar states in binary fluid convection, odd parity convectons do not pump concentration horizontally. Stable but time-dependent localized structures are present for Rayleigh numbers below the snaking region for stationary convectons. The computations are carried out for (inverse) Lewis number \tau = 1/15 and Prandtl numbers Pr = 1 and Pr >> 1

    Dynamics of fingering convection II: The formation of thermohaline staircases

    Get PDF
    Regions of the ocean's thermocline unstable to salt fingering are often observed to host thermohaline staircases, stacks of deep well-mixed convective layers separated by thin stably-stratified interfaces. Decades after their discovery, however, their origin remains controversial. In this paper we use 3D direct numerical simulations to shed light on the problem. We study the evolution of an analogous double-diffusive system, starting from an initial statistically homogeneous fingering state and find that it spontaneously transforms into a layered state. By analysing our results in the light of the mean-field theory developed in Paper I, a clear picture of the sequence of events resulting in the staircase formation emerges. A collective instability of homogeneous fingering convection first excites a field of gravity waves, with a well-defined vertical wavelength. However, the waves saturate early through regular but localized breaking events, and are not directly responsible for the formation of the staircase. Meanwhile, slower-growing, horizontally invariant but vertically quasi-periodic gamma-modes are also excited and grow according to the gamma-instability mechanism. Our results suggest that the nonlinear interaction between these various mean-field modes of instability leads to the selection of one particular gamma-mode as the staircase progenitor. Upon reaching a critical amplitude, this progenitor overturns into a fully-formed staircase. We conclude by extending the results of our simulations to real oceanic parameter values, and find that the progenitor gamma-mode is expected to grow on a timescale of a few hours, and leads to the formation of a thermohaline staircase in about one day with an initial spacing of the order of one to two metres.Comment: 18 pages, 9 figures, associated mpeg file at http://earth.uni-muenster.de/~stellma/movie_small.mp4, submitted to JF
    corecore