449 research outputs found

    Target annihilation by diffusing particles in inhomogeneous geometries

    Full text link
    The survival probability of immobile targets, annihilated by a population of random walkers on inhomogeneous discrete structures, such as disordered solids, glasses, fractals, polymer networks and gels, is analytically investigated. It is shown that, while it cannot in general be related to the number of distinct visited points, as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behaviour at large times can still be expressed in terms of the spectral dimension d~\widetilde {d}, and its exact analytical expression is given. The results show that the asymptotic survival probability is site independent on recurrent structures (d~≤2\widetilde{d}\leq2), while on transient structures (d~>2\widetilde{d}>2) it can strongly depend on the target position, and such a dependence is explicitly calculated.Comment: To appear in Physical Review E - Rapid Communication

    Geometry-controlled kinetics

    Full text link
    It has long been appreciated that transport properties can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target -- the first-passage time (FPT). Although essential to quantify the kinetics of reactions on all time scales, determining the FPT distribution was deemed so far intractable. Here, we calculate analytically this FPT distribution and show that transport processes as various as regular diffusion, anomalous diffusion, diffusion in disordered media and in fractals fall into the same universality classes. Beyond this theoretical aspect, this result changes the views on standard reaction kinetics. More precisely, we argue that geometry can become a key parameter so far ignored in this context, and introduce the concept of "geometry-controlled kinetics". These findings could help understand the crucial role of spatial organization of genes in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.Comment: Submitted versio

    Survival of classical and quantum particles in the presence of traps

    Full text link
    We present a detailed comparison of the motion of a classical and of a quantum particle in the presence of trapping sites, within the framework of continuous-time classical and quantum random walk. The main emphasis is on the qualitative differences in the temporal behavior of the survival probabilities of both kinds of particles. As a general rule, static traps are far less efficient to absorb quantum particles than classical ones. Several lattice geometries are successively considered: an infinite chain with a single trap, a finite ring with a single trap, a finite ring with several traps, and an infinite chain and a higher-dimensional lattice with a random distribution of traps with a given density. For the latter disordered systems, the classical and the quantum survival probabilities obey a stretched exponential asymptotic decay, albeit with different exponents. These results confirm earlier predictions, and the corresponding amplitudes are evaluated. In the one-dimensional geometry of the infinite chain, we obtain a full analytical prediction for the amplitude of the quantum problem, including its dependence on the trap density and strength.Comment: 35 pages, 10 figures, 2 tables. Minor update

    Diffusion in scale-free networks with annealed disorder

    Full text link
    The scale-free (SF) networks that have been studied so far contained quenched disorder generated by random dilution which does not vary with the time. In practice, if a SF network is to represent, for example, the worldwide web, then the links between its various nodes may temporarily be lost, and re-established again later on. This gives rise to SF networks with annealed disorder. Even if the disorder is quenched, it may be more realistic to generate it by a dynamical process that is happening in the network. In this paper, we study diffusion in SF networks with annealed disorder generated by various scenarios, as well as in SF networks with quenched disorder which, however, is generated by the diffusion process itself. Several quantities of the diffusion process are computed, including the mean number of distinct sites visited, the mean number of returns to the origin, and the mean number of connected nodes that are accessible to the random walkers at any given time. The results including, (1) greatly reduced growth with the time of the mean number of distinct sites visited; (2) blocking of the random walkers; (3) the existence of a phase diagram that separates the region in which diffusion is possible from one in which diffusion is impossible, and (4) a transition in the structure of the networks at which the mean number of distinct sites visited vanishes, indicate completely different behavior for the computed quantities than those in SF networks with quenched disorder generated by simple random dilution.Comment: 18 pages including 8 figure

    The average number of distinct sites visited by a random walker on random graphs

    Full text link
    We study the linear large nn behavior of the average number of distinct sites S(n)S(n) visited by a random walker after nn steps on a large random graph. An expression for the graph topology dependent prefactor BB in S(n)=BnS(n) = Bn is proposed. We use generating function techniques to relate this prefactor to the graph adjacency matrix and then devise message-passing equations to calculate its value. Numerical simulations are performed to evaluate the agreement between the message passing predictions and random walk simulations on random graphs. Scaling with system size and average graph connectivity are also analysed.Comment: 22 pages, 4 figure

    Mean Field Model of Coagulation and Annihilation Reactions in a Medium of Quenched Traps: Subdiffusion

    Full text link
    We present a mean field model for coagulation (A+A→AA+A\to A) and annihilation (A+A→0A+A\to 0) reactions on lattices of traps with a distribution of depths reflected in a distribution of mean escape times. The escape time from each trap is exponentially distributed about the mean for that trap, and the distribution of mean escape times is a power law. Even in the absence of reactions, the distribution of particles over sites changes with time as particles are caught in ever deeper traps, that is, the distribution exhibits aging. Our main goal is to explore whether the reactions lead to further (time dependent) changes in this distribution.Comment: 9 pages, 3 figure
    • …
    corecore