116 research outputs found
Recommended from our members
Fermilab research Program 1976
This collection of one-page summaries of Fermilab proposals is intended to serve as a way station between the experiment number with its short title and the full proposal. It is not intended to be a review of the Fermilab experimental program. Just as an abstract of a journal article embodies the main points of the article, so these one-page summaries are intended to convey the major points of a proposal. These should include its physics justification, a brief description of the apparatus and the demands that the experiment will make on the Laboratory. Of course these summaries are not intended to take the place of the proposal itself which is the primary document available in the Fermilab library and at SLAC, BNL and CERN. Individual copies should be obtained from the spokesman of the experiment whose name is underlined in these summaries. Summaries for all experiments and pending proposals are included. These comprise approved, unconsidered and deferred proposals. Rejected, withdrawn and inactive proposals are not included. It is the experimenters themselves who are best able to write the summary and in most cases that is what was done. For the early proposals and those cases where repeated cajoling could not produce one from the experimenters, the summary was prepared by a Fermilab staff member and then sent to the spokesman for comment. All proposals submitted before the May 7, 1976 deadline for consideration at the extended summer meeting of our Program Advisory Committee are included. It is not intended that this volume be updated annually but perhaps only reissued when the previous ones becomes hopelessly obsolete
Nuclear Shadowing in Electro-Weak Interactions
Shadowing is a quantum phenomenon leading to a non-additivity of electroweak
cross sections on nucleons bound in a nucleus. It occurs due to destructive
interference of amplitudes on different nucleons. Although the current
experimental evidence for shadowing is dominated by charged-lepton nucleus
scattering, studies of neutrino nucleus scattering have recently begun and
revealed unexpected results.Comment: 77 pages, 57 figures. To be published in "Progress in Particle and
Nuclear Physics" 201
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Recommended from our members
Proposal to perform a high - statistics neutrino scattering experiment using a fine - grained detector in the NuMI Beam
The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities
Experimental And Theoretical High Energy Physics Research At UCLA
This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
Nucleon Structure from Neutrino Interactions in an Iron Target with a Study of the Singlet Quark Distribution
Nucleon structure functions have been extracted from a large sample of neutrino and anti-neutrino inclusive charged-current events. These data were obtained over the period from June, 1979 through January, 1980, using the Lab E detector in the N30 dichromatic beam at Fermilab (experiment E616).
The use of the narrow-band beam made possible flux normalized cross section and structure function measurements. Neutrinos were obtained from sign and momentum selected pions and kaons produced from 400GeV primary protons. Details of the methods used to monitor and determine properties of the secondary beam are provided. The flux of neutrinos at the detector was calculated from this knowledge.
The Lab E detector performed the function of neutrino target, as well as measuring final state properties of the events. Hadron energy was measured using calorimetry. Spark chambers interspersed throughout the target and following toroidal spectrometer were used to sample the position of the outgoing muon. From these measurements, the muon angle and momentum could be determined. The procedure used for reconstructing physics variables from detector measurements is presented with estimates of systematic errors.
The methods used to extract structure functions from the data are detailed. An analysis of sources of systematic error on these results is made. A comparison of our results for F2 is made with other measurements from both neutrino and charged lepton scattering. Differences in overall normalization and in the x dependence of the structure function are found. The mean square quark charge rule from the quark-parton model is confirmed at the 10% level. Quantum Chromodynamics (QCD) predicts a pattern of scaling violations in F2 which is observed in our results. This has been quantified by making fits to the data using numerical integration of the Altarelli-Parisi equations. The value of ΛMS, the QCD scale parameter, is found to be 340±100±60MeV with an additional uncertainty of ±50MeV due to the unknown form of the gluon distribution.</p
- …