700 research outputs found
Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet
Many interesting problems in physics, chemistry, and computer science are
equivalent to problems of interacting spins. However, most of these problems
require computational resources that are out of reach by classical computers. A
promising solution to overcome this challenge is to exploit the laws of quantum
mechanics to perform simulation. Several "analog" quantum simulations of
interacting spin systems have been realized experimentally. However, relying on
adiabatic techniques, these simulations are limited to preparing ground states
only. Here we report the first experimental results on a "digital" quantum
simulation on thermal states; we simulated a three-spin frustrated magnet, a
building block of spin ice, with an NMR quantum information processor, and we
are able to explore the phase diagram of the system at any simulated
temperature and external field. These results serve as a guide for identifying
the challenges for performing quantum simulation on physical systems at finite
temperatures, and pave the way towards large scale experimental simulations of
open quantum systems in condensed matter physics and chemistry.Comment: 7 pages for the main text plus 6 pages for the supplementary
material
Recommended from our members
Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet
Many problems of interest in physics, chemistry and computer science are equivalent to problems defined on systems of interacting spins. However, most such problems require computational resources that are out of reach with classical computers. A promising solution to overcome this challenge is quantum simulation. Several 'analogue' quantum simulations of interacting spin systems have been realized experimentally, where ground states were prepared using adiabatic techniques. Here we report a 'digital' quantum simulation of thermal states; a three-spin frustrated magnet was simulated using a nuclear magnetic resonance quantum information processor, and we were able to explore the phase diagram of the system at any simulated temperature and external field. These results help to identify the challenges for performing quantum simulations of physical systems at finite temperatures, and suggest methods that may be useful in simulating thermal open quantum systems.Chemistry and Chemical Biolog
A building block for hardware belief networks
Belief networks represent a powerful approach to problems involving
probabilistic inference, but much of the work in this area is software based
utilizing standard deterministic hardware based on the transistor which
provides the gain and directionality needed to interconnect billions of them
into useful networks. This paper proposes a transistor like device that could
provide an analogous building block for probabilistic networks. We present two
proof-of-concept examples of belief networks, one reciprocal and one
non-reciprocal, implemented using the proposed device which is simulated using
experimentally benchmarked models.Comment: Keywords: stochastic, sigmoid, phase transition, spin glass,
frustration, reduced frustration, Ising model, Bayesian network, Boltzmann
machine. 23 pages, 9 figure
Experimental realization of the Yang-Baxter Equation via NMR interferometry
The Yang-Baxter equation is an important tool in theoretical physics, with
many applications in different domains that span from condensed matter to
string theory. Recently, the interest on the equation has increased due to its
connection to quantum information processing. It has been shown that the
Yang-Baxter equation is closely related to quantum entanglement and quantum
computation. Therefore, owing to the broad relevance of this equation, besides
theoretical studies, it also became significant to pursue its experimental
implementation. Here, we show an experimental realization of the Yang-Baxter
equation and verify its validity through a Nuclear Magnetic Resonance (NMR)
interferometric setup. Our experiment was performed on a liquid state
Iodotrifluoroethylene sample which contains molecules with three qubits. We use
Controlled-transfer gates that allow us to build a pseudo-pure state from which
we are able to apply a quantum information protocol that implements the
Yang-Baxter equation.Comment: 10 pages and 6 figure
Introduction to Quantum Algorithms for Physics and Chemistry
In this introductory review, we focus on applications of quantum computation
to problems of interest in physics and chemistry. We describe quantum
simulation algorithms that have been developed for electronic-structure
problems, thermal-state preparation, simulation of time dynamics, adiabatic
quantum simulation, and density functional theory.Comment: 44 pages, 5 figures; comments or suggestions for improvement are
welcom
- …