24 research outputs found
Particle swarm optimization with thresheld convergence
Many heuristic search techniques have concurrent processes of exploration and exploitation. In particle swarm optimization, an improved 'pbest' position can represent a new more promising region of the search space (exploration) or a better solution within the current region (exploitation). The latter can interfere with the former since the identification of a new more promising region depends on finding a (random) solution in that region which is better than the current 'pbest'. Ideally, every sampled solution will have the same relative fitness with respect to its nearby local optimum – finding the best region to exploit then becomes the problem of finding the best random solution. However, a locally optimized solution from a poor region of the search space can be better than a random solution from a good region of the search space. Since exploitation can interfere with
subsequent/concurrent exploration, it should be prevented during the early stages of the search process. In thresheld convergence, early exploitation is “held” back by a threshold function. Experiments show that the addition of thresheld convergence to particle swarm optimization can lead to large performance improvements in multi-modal search spaces
Invited paper: A Review of Thresheld Convergence
A multi-modal search space can be defined as having multiple attraction basins – each basin has a single local optimum which is reached from all points in that basin when greedy local search is used. Optimization in multi-modal search spaces can then be viewed as a two-phase process. The first phase is exploration in which the most promising attraction basin is identified. The second phase is exploitation in which the best solution (i.e. the local optimum) within the previously identified attraction basin is attained. The goal of thresheld convergence is to improve the performance of search techniques during the first phase of exploration. The effectiveness of thresheld convergence has been demonstrated through applications to existing metaheuristics such as particle swarm optimization and differential evolution, and through the development of novel metaheuristics such as minimum population search and leaders and followers
Minimum Population Search, an Application to Molecular Docking
Computer modeling of protein-ligand interactions is one of the most important phases in a drug design process. Part of the process involves the optimization of highly multi-modal objective (scoring) functions. This research presents the Minimum Population Search heuristic as an alternative for solving these global unconstrained optimization problems. To determine the effectiveness of Minimum Population Search, a comparison with seven state-of-the-art search heuristics is performed. Being specifically designed for the optimization of large scale multi-modal problems, Minimum Population Search achieves excellent results on all of the tested complexes, especially when the amount of available function evaluations is strongly reduced. A first step is also made toward the design of hybrid algorithms based on the exploratory power of Minimum Population Search. Computational results show that hybridization leads to a further improvement in performance
Multi-objective optimization approach based on Minimum Population Search algorithm
URL del artĂculo en la web de la Revista: https://www.upo.es/revistas/index.php/gecontec/article/view/4049Minimum Population Search is a recently developed metaheuristic for optimization of mono-objective continuous problems, which has proven to be a very effective optimizing large scale and multi-modal problems. One of its key characteristic is the ability to perform an efficient exploration of large dimensional spaces. We assume that this feature may prove useful when optimizing multi-objective problems, thus this paper presents a study of how it can be adapted to a multi-objective approach. We performed experiments and comparisons with five multi-objective selection processes and we test the effectiveness of Thresheld Convergence on this class of problems. Following this analysis we suggest a Multi-objective variant of the algorithm. The proposed algorithm is compared with multi-objective evolutionary algorithms IBEA, NSGA2 and SPEA2 on several well-known test problems. Subsequently, we present two hybrid approaches with the IBEA and NSGA-II, these hybrids allow to further improve the achieved results.Universidad Pablo de Olavid
Experimental analysis on the operation of Particle Swarm Optimization
In Particle Swarm Optimization, it has been observed that swarms often stall as opposed to converge. A stall occurs when all of the forward progress that could occur is instead rejected as Failed Exploration. Since the swarms particles are in good regions of the search space with the potential to make more progress, the introduction of perturbations to the pbest positions can lead to significant improvements in the performance of standard Particle Swarm Optimization. The pbest perturbation has been supported by a line search technique that can identify unimodal, globally convex, and non-globally convex search spaces, as well as the approximate size of attraction basin.
A deeper analysis of the stall condition reveals that it involves clusters of particles that are performing exploitation, and these clusters are separated by individual particles that are performing exploration. This stall pattern can be identified by a newly developed method that is efficient, accurate, real-time, and search space independent. A more targeted (heterogenous) modification for stall is presented for globally convex search spaces
Per-instance configuration of the modularized CMA-ES by means of classifier chains and exploratory landscape analysis
Algorithms and the Foundations of Software technolog