3,090 research outputs found
SciTech News Volume 71, No. 2 (2017)
Columns and Reports From the Editor 3
Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14
Reviews Sci-Tech Book News Reviews 16
Advertisements IEEE
Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges
Participatory sensing is a powerful paradigm which takes advantage of
smartphones to collect and analyze data beyond the scale of what was previously
possible. Given that participatory sensing systems rely completely on the
users' willingness to submit up-to-date and accurate information, it is
paramount to effectively incentivize users' active and reliable participation.
In this paper, we survey existing literature on incentive mechanisms for
participatory sensing systems. In particular, we present a taxonomy of existing
incentive mechanisms for participatory sensing systems, which are subsequently
discussed in depth by comparing and contrasting different approaches. Finally,
we discuss an agenda of open research challenges in incentivizing users in
participatory sensing.Comment: Updated version, 4/25/201
Mean-Field-Type Games in Engineering
A mean-field-type game is a game in which the instantaneous payoffs and/or
the state dynamics functions involve not only the state and the action profile
but also the joint distributions of state-action pairs. This article presents
some engineering applications of mean-field-type games including road traffic
networks, multi-level building evacuation, millimeter wave wireless
communications, distributed power networks, virus spread over networks, virtual
machine resource management in cloud networks, synchronization of oscillators,
energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201
Minds Online: The Interface between Web Science, Cognitive Science, and the Philosophy of Mind
Alongside existing research into the social, political and economic impacts of the Web, there is a need to study the Web from a cognitive and epistemic perspective. This is particularly so as new and emerging technologies alter the nature of our interactive engagements with the Web, transforming the extent to which our thoughts and actions are shaped by the online environment. Situated and ecological approaches to cognition are relevant to understanding the cognitive significance of the Web because of the emphasis they place on forces and factors that reside at the level of agent–world interactions. In particular, by adopting a situated or ecological approach to cognition, we are able to assess the significance of the Web from the perspective of research into embodied, extended, embedded, social and collective cognition. The results of this analysis help to reshape the interdisciplinary configuration of Web Science, expanding its theoretical and empirical remit to include the disciplines of both cognitive science and the philosophy of mind
Peer-to-Peer Energy Trading in Smart Residential Environment with User Behavioral Modeling
Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid.
Trading energy among users in a decentralized fashion has been referred to as Peer- to-Peer (P2P) Energy Trading, which has attracted significant attention from the research and industry communities in recent times. However, previous research has mostly focused on engineering aspects of P2P energy trading systems, often neglecting the central role of users in such systems. P2P trading mechanisms require active participation from users to decide factors such as selling prices, storing versus trading energy, and selection of energy sources among others. The complexity of these tasks, paired with the limited cognitive and time capabilities of human users, can result sub-optimal decisions or even abandonment of such systems if performance is not satisfactory. Therefore, it is of paramount importance for P2P energy trading systems to incorporate user behavioral modeling that captures users’ individual trading behaviors, preferences, and perceived utility in a realistic and accurate manner. Often, such user behavioral models are not known a priori in real-world settings, and therefore need to be learned online as the P2P system is operating.
In this thesis, we design novel algorithms for P2P energy trading. By exploiting a variety of statistical, algorithmic, machine learning, and behavioral economics tools, we propose solutions that are able to jointly optimize the system performance while taking into account and learning realistic model of user behavior. The results in this dissertation has been published in IEEE Transactions on Green Communications and Networking 2021, Proceedings of IEEE Global Communication Conference 2022, Proceedings of IEEE Conference on Pervasive Computing and Communications 2023 and ACM Transactions on Evolutionary Learning and Optimization 2023
- …