130,817 research outputs found

    Differential Calculus Teaching through Virtual Learning Objects in the Field of Management Sciences

    Get PDF
    AbstractThis paper examines the use of Virtual Learning Objects (VLO) in the teaching of differential calculus in the area of Management Sciences as a teaching strategy to improve the assimilation of the theoretical knowledge acquired in the classroom courses. This is accomplished by the construction of virtual pedagogical practices concerning to optimization problems through GeoGebra. It is free software that generates VLOs with an adequate contrast between the theoretical mathematical knowledge and its practical application in Management Sciences. Thus, different dynamic, algorithmic and heuristic processes are encouraged, being useful for logic and constructivist student training. The proposed methodology is based on the construction of VLOs (Virtual Learning Objects). It allows choosing variables in the GeoGebra software where students can interact with the formulation of mathematical problems applied to their curricula. So, they strengthen their knowledge and have a greater autonomy in the analysis of optimization problems in financial and management field. The results show how these teaching strategies facilitate the assimilation of the concepts of differential calculus in Management Sciences students. This allows a greater development of student skills in front of the understanding of the geometric behaviour of a curve

    Developing an ontology of mathematical logic

    Get PDF
    An ontology provides a mechanism to formally represent a body of knowledge. Ontologies are one of the key technologies supporting the Semantic Web and the desire to add meaning to the information available on the World Wide Web. They provide the mechanism to describe a set of concepts, their properties and their relations to give a shared representation of knowledge. The MALog project are developing an ontology to support the development of high-quality learning materials in the general area of mathematical logic. This ontology of mathematical logic will form the basis of the semantic architecture allowing us to relate different learning objects and recommend appropriate learning paths. This paper reviews the technologies used to construct the ontology, the use of the ontology to support learning object development and explores the potential future use of the ontology

    Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Π°Ρ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° Π½Π°Π²Ρ‹ΠΊΠΎΠ² ΠΈ ΡƒΠΌΠ΅Π½ΠΈΠΉ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π³Π΅Π½Ρ‚Π° студСнтов Π²Ρ‹ΡΡˆΠ΅Π³ΠΎ ΡƒΡ‡Π΅Π±Π½ΠΎΠ³ΠΎ завСдСния

    Get PDF
    In the below article, the application of the fuzzy logical conclusion method is considered as decision-maker in the process of analyzing the students skills and abilities based on the requirements of potential employers, in order to reduce the time of the first interview for potential candidates on a vacant position. When analyzing the results of the assessment of the competence of university students, a certain degree of fuzziness arises. In modern practice, fuzzy logic is used in many different assessment methods, including questioning, interviewing, testing, descriptive method, classification method, pairwise comparison, rating method, business games competence models, and the like. Each of the methods has its advantages and disadvantages, but they are effective only as part of a unified personnel management system. As a method for implementing a systematic approach to the assessment of the contingent of students, it is proposed to use fuzzy logic, a mathematical apparatus that allows you to build a model of an object based on fuzzy judgments. The use of fuzzy logic, the mathematical apparatus of which allows you to build a model of the object, based on fuzzy reasoning and rules. The most important condition for creating such a model is to translate the fuzzy, qualitative assessments used by man into the language of mathematics, which will be understood by the computer. The most used are fuzzy inferences using the Mamdani and Sugeno methods. In a fuzzy inference of the Mamdani type, the value of the output variable is given by fuzzy terms, in the conclusion of the Sugeno type, as a linear combination of the input variables. Research in the field of application of fuzzy logic in socio-economic systems suggests that it can be used to assess the competencies of university students.Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСно использованиС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠ³ΠΎ логичСского Π²Ρ‹Π²ΠΎΠ΄Π° для ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… Π°Π½Π°Π»ΠΈΠ·Π° Π½Π°Π²Ρ‹ΠΊΠΎΠ² ΠΈ ΡƒΠΌΠ΅Π½ΠΈΠΉ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π³Π΅Π½Ρ‚Π° студСнтов исходя ΠΈΠ· Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚ΠΎΠ΄Π°Ρ‚Π΅Π»Π΅ΠΉ, с Ρ†Π΅Π»ΡŒΡŽ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π° ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΡƒΡŽ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ΠΎΠ² Π½Π° Π²Π°ΠΊΠ°Π½Ρ‚Π½ΡƒΡŽ Π΄ΠΎΠ»ΠΆΠ½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΎΡ†Π΅Π½ΠΊΠΈ компСтСнтности студСнтов Π²ΡƒΠ·ΠΎΠ² Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ опрСдСлСнная ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ нСчСткости. Π’ соврСмСнной ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ нСчСткая Π»ΠΎΠ³ΠΈΠΊΠ° примСняСтся Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… ΠΎΡ†Π΅Π½ΠΊΠΈ, Π² Ρ‚ΠΎΠΌ числС Π°Π½ΠΊΠ΅Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΈΠ½Ρ‚Π΅Ρ€Π²ΡŒΡŽ, тСстированиС, ΠΎΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΌΠ΅Ρ‚ΠΎΠ΄ классификации, ΠΏΠ°Ρ€Π½ΠΎΠ΅ сравнСниС, Ρ€Π΅ΠΉΡ‚ΠΈΠ½Π³ΠΎΠ²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, Π΄Π΅Π»ΠΎΠ²Ρ‹Π΅ ΠΈΠ³Ρ€Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ компСтСнтности ΠΈ Ρ‚ΠΎΠΌΡƒ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅. ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ свои прСимущСства ΠΈ нСдостатки, Π½ΠΎ эффСктивны ΠΎΠ½ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² составС Π΅Π΄ΠΈΠ½ΠΎΠΉ систСмы управлСния пСрсоналом. Как ΠΌΠ΅Ρ‚ΠΎΠ΄ для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ систСмного ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ ΠΎΡ†Π΅Π½ΠΊΠ΅ ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π³Π΅Π½Ρ‚Π° студСнтов ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅Ρ‡Π΅Ρ‚ΠΊΡƒΡŽ Π»ΠΎΠ³ΠΈΠΊΡƒ, матСматичСский Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ модСль ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡƒΡŽ Π½Π° Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΡ… суТдСниях. ИспользованиС Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ, матСматичСский Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ позволяСт ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ модСль ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΡ… рассуТдСниях ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°Ρ…. Π’Π°ΠΆΠ½Π΅ΠΉΡˆΠ΅Π΅ условиС создания Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ пСрСвСсти Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΠ΅, качСствСнныС ΠΎΡ†Π΅Π½ΠΊΠΈ, примСняСмыС Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠΎΠΌ, Π½Π° язык ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, которая Π±ΡƒΠ΄Π΅Ρ‚ понятна Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ машинС. НаиболСС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΠ΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ способов Мамдани ΠΈ Π‘ΡƒΠ³Π΅Π½ΠΎ. Π’ Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠΌ Π²Ρ‹Π²ΠΎΠ΄Π΅ Ρ‚ΠΈΠΏΠ° Мамдани Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡŽΡ‚ΡΡ Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΈΠΌΠΈ Ρ‚Π΅Ρ€ΠΌΠ°ΠΌΠΈ, Π² Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠΈ Ρ‚ΠΈΠΏΠ° Π‘ΡƒΠ³Π΅Π½ΠΎ – ΠΊΠ°ΠΊ линСйная комбинация Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. ИсслСдования Π² области примСнСния Π½Π΅Ρ‡Π΅Ρ‚ΠΊΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ Π² социоэкономичСских систСмах ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ ΠΎ возмоТности Π΅Π΅ использования для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ†ΠΈΠΉ студСнтов Π²ΡƒΠ·ΠΎΠ²

    Identification Critical Thinking Stages Of Students’ Mathematics Education Study Program FMIPA UNNES For Solving Mathematics Problems

    Get PDF
    This research is qualitative research that purpose to describe critical thinking stages of college students for each level of critical thinking skills in Mathematics Education Study Program FMIPA UNNES for solving mathematics problems. In the clarification, a subject in critical thinking level 0 until level 3 showed the same characteristic that is getting the information in the picture, and be able to create images to get additional information. In the assessment, subjects in critical thinking level 0 just dig a small portion of relevant information, the subject in critical thinking level 1 until level 3 dig most of the information. In the inference stage, a subject in critical thinking level 0 to level 2 only using inductive thinking, subject in critical thinking level 3 using deductive thinking. In the strategy stage, a subject in critical thinking 0 using the analogy or not can come up with strategies employed, subject in critical thinking level 1 and level 2 using the analogy, subject level 3 using his own ideas by looking for relationships in solving problems. Keywords: critical thinking, the stages of critical thinking, clarification, assessment, inference, strategies , and solving mathematics problem

    Evolution of science II: Insights into working of Nature

    Full text link
    We attempt to provide a comprehensive model of evolution of science across millennia taking into account the contributions of other intellectual traditions, cultural value system and increasing in sophistication of humans in their study of nature. We also briefly discuss the role of technology and its interplay in the evolution of science. We identify five primary approaches to the study of nature, namely ad hoc formulations, religious approach, pragmatic approach, axiomatic approach and the logic based approach. Each of these approaches have had their prime periods and have contributed significantly to human understanding of nature and have also overlapped within a society. Each approach has had a central role over human evolution at some stage. We surmise that the currently dominant axiomatic method will reach its limits due to complexity of the system and may never be fully formalised. We suggest that the future progress of science will more be a logic based approach where experimentation and simulations rather than axiomatic firmness will be used to test our understanding of nature.Comment: 18 pages, 2 figure

    The Integral Role of Borough of Manhattan Community College in the Mathematics Preparation of Prospective Teachers

    Get PDF
    Borough of Manhattan Community College (BMCC) of the City University of New York (CUNY) is the only two-year college on the island of Manhattan. This institution has a diverse population of approximately 17,000 students who attend day/evening/weekend classes. Over 1,000 students are enrolled in the Early Childhood Education (ECE) Program. Each year, approximately 300 new students select this area of concentration. The dropout rate is less than 14%. The ECE Program prepares students for elementary education programs at four-year institutions. The program also offers two career areas of study: Infant Toddler and Pre-School. This article will discuss how high quality teacher preparation at BMCC is promoted through mathematics coursework recommended by the NCTM and AMATYC for prospective elementary school teachers, the importance of technology in providing enriching pre-teaching experiences, collaboration with four-year institutions in teacher preparation efforts, and the importance of special teacher preparation of underrepresented populations for underrepresented populations of New York City

    The songwriting coalface: where multiple intelligences collide

    Get PDF
    This paper investigates pedagogy around songwriting professional practice. Particular focus is given to the multiple intelligence theory of Howard Gardner as a lens through which to view songwriting practice, referenced to recent songwriting‐specific research (e.g. McIntyre, Bennett). Songwriting education provides some unique challenges; firstly, due to the qualitative nature of assessment and the complex and multi‐faceted nature of skills necessary (lyric writing, composing, recording, and performing), and secondly, in some less‐tangible capacities beneficial to the songwriter (creative skills, and nuanced choice‐making). From the perspective of songwriting education, Gardner’s MI theory provides a β€˜useful fiction’ (his term) for knowledge transfer in the domain, especially (and for this researcher, surprisingly) in naturalistic intelligence

    Using Scratch to Teach Undergraduate Students' Skills on Artificial Intelligence

    Full text link
    This paper presents a educational workshop in Scratch that is proposed for the active participation of undergraduate students in contexts of Artificial Intelligence. The main objective of the activity is to demystify the complexity of Artificial Intelligence and its algorithms. For this purpose, students must realize simple exercises of clustering and two neural networks, in Scratch. The detailed methodology to get that is presented in the article.Comment: 6 pages, 7 figures, workshop presentatio
    • …
    corecore