7,803 research outputs found

    Robust H∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust H∞ filtering problem is studied for a class of uncertain nonlinear networked systems with both multiple stochastic time-varying communication delays and multiple packet dropouts. A sequence of random variables, all of which are mutually independent but obey Bernoulli distribution, are introduced to account for the randomly occurred communication delays. The packet dropout phenomenon occurs in a random way and the occurrence probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval. The discrete-time system under consideration is also subject to parameter uncertainties, state-dependent stochastic disturbances and sector-bounded nonlinearities. We aim to design a linear full-order filter such that the estimation error converges to zero exponentially in the mean square while the disturbance rejection attenuation is constrained to a give level by means of the H∞ performance index. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as well as prescribed H∞ performance for the overall filtering error dynamics, in the presence of random delays, random dropouts, nonlinearities, and the parameter uncertainties. These conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs), and then the explicit expression is given for the desired filter parameters. Simulation results are employed to demonstrate the effectiveness of the proposed filter design technique in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, National Natural Science Foundation of China under Grant 60825303, 60834003, 973 Project under Grant 2009CB320600, Fok Ying Tung Education Foundation under Grant 111064, and the Youth Science Fund of Heilongjiang Province under Grant QC2009C63

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Robust Fault Detection of Switched Linear Systems with State Delays

    Get PDF
    This correspondence deals with the problem of robust fault detection for discrete-time switched systems with state delays under an arbitrary switching signal. The fault detection filter is used as the residual generator, in which the filter parameters are dependent on the system mode. Attention is focused on designing the robust fault detection filter such that, for unknown inputs, control inputs, and model uncertainties, the estimation error between the residuals and faults is minimized. The problem of robust fault detection is converted into an H infin-filtering problem. By a switched Lyapunov functional approach, a sufficient condition for the solvability of this problem is established in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed method

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements

    Get PDF
    The official published version of the article can be found at the link below.This paper is concerned with the robust filtering problem for a class of nonlinear stochastic systems with missing measurements and parameter uncertainties. The missing measurements are described by a binary switching sequence satisfying a conditional probability distribution, and the nonlinearities are expressed by the statistical means. The purpose of the filtering problem is to design a filter such that, for all admissible uncertainties and possible measurements missing, the dynamics of the filtering error is exponentially mean-square stable, and the individual steady-state error variance is not more than prescribed upper bound. A sufficient condition for the exponential mean-square stability of the filtering error system is first derived and an upper bound of the state estimation error variance is then obtained. In terms of certain linear matrix inequalities (LMIs), the solvability of the addressed problem is discussed and the explicit expression of the desired filters is also parameterized. Finally, a simulation example is provided to demonstrate the effectiveness and applicability of the proposed design approach.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany

    Robust H∞ control for discrete-time fuzzy systems with infinite-distributed delays

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust H∞ control problem for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays and uncertain parameters. The time delay is assumed to be infinitely distributed in the discrete-time domain, and the uncertain parameters are norm-bounded. By using the linear matrix inequality (LMI) technique, sufficient conditions are derived for ensuring the exponential stability as well as the H infin performance for the closed-loop fuzzy control system. It is also shown that the controller gain can be characterized in terms of the solution to a set of LMIs, which can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out
    corecore