1,909 research outputs found

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    De-Centralized and Centralized Control for Realistic EMS Maglev Systems

    Get PDF
    A comparative study of de-centralized and centralized controllers when used with real EMS Maglev Systems is introduced. This comparison is divided into two parts. Part I is concerned with numerical simulation and experimental testing on a two ton six-magnet EMS Maglev vehicle. Levitation and lateral control with these controllers individually and when including flux feedback control in combination with these controllers to enhance stability are introduced. The centralized controller is better than the de-centralized one when the system is exposed to a lateral disturbing force such as wind gusts. The flux feedback control when combined with de-centralized or centralized controllers does improve the stability and is more resistant and robust with respect to the air gap variations. Part II is concerned with the study of Maglev vehicle-girder dynamic interaction system and the comparison between these two controllers on this typical system based on performance and ride quality achieved. Numerical simulations of the ODU EMS Maglev vehicle interacting with girder are conducted with these two different controllers. The de-centralized and centralized control for EMS Maglev systems that interact with a flexible girder provides similar ride quality

    Streamlined design and self reliant hardware for active control of precision space structures

    Get PDF
    Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372

    Multi-agent replicator controller for sustainable vibration control of smart structures

    Get PDF
    Developed in the artificial intelligence community, an intelligent agent is an autonomous abstract or software entity that observes through sensors and acts upon an environment in an adaptive or intelligent manner. In a centralized control system, one central controller uses the global measurement data collected from all the sensors installed in the structure to make control decisions and to dispatch them to control devices. The centralized controller itself represents a single point of potential failure. To overcome this shortcoming, decentralized control is used to improve redundancy. This paper introduces three ideas to vibration control of smart structures: agent technology, replicator dynamics from evolutionary game theory, and energy minimization. It presents two new methods: 1) a single-agent Centralized Replicator Controller (CRC) and a decentralized Multi-Agent Replicator Controller (MARC) for vibration control of smart structures. The use of agents and a decentralized approach enhances the robustness of the entire vibration control system. The proposed control methodologies are applied to vibration control of a 3-story steel frame and a 20-story steel benchmark structure subjected to two sets of seismic loadings: historic earthquake accelerograms and artificial earthquakes and compared with the corresponding centralized and decentralized conventional Linear Quadratic Regulator (LQR) control algorithm

    Tensegrity mechanisms with active vibration suppression

    Get PDF
    Tato práce se zabývá syntézou, analýzou a optimalizací aktivního snižování vibrací tensegritních manipulátorů. Tyto struktury mají obecně nepříznivé tlumící vlastnosti z důvodu přítomnosti infinitesimálních mechanismů. Proto se zde jako vhodné jeví použití aktivních prostředků. Je provedena komplexní rešerše tensegritní robotiky společně se srovnáním různých přístupů k aktivnímu tlumení vibrací. Tyto dvě oblasti jsou poté sjednoceny a aplikovány na tři konkrétní případy tensegritních manipulátorů. Současně jsou pro tento účel zvoleny senzory a aktuátory, a jejich optimální umístění v rámci zmíněných struktur je zhodnoceno. Výsledky naznačují, že aktivní snižování vibrací pomocí decentralizované integrální silové zpětné vazby je pro tensegritní manipulátory účinné z hlediska tlumení a vibroizolace.This work deals with the synthesis, analysis, and optimization of active vibration suppression of tensegrity manipulators. These structures generally have poor damping properties due to the presence of infinitesimal mechanisms. Therefore, it seems suitable for this task to utilize active means. A comprehensive literature review of tensegrity robotics is performed together with a juxtaposition of different active vibration control approaches. The two domains are then merged and applied to three specific cases of tensegrity manipulators. Concurrently, sensors and actuators are selected for the task and their optimal placement within the mentioned structures is examined. The results suggest that active vibration suppression using decentralized integral force feedback is effective for tensegrity manipulators in terms of damping and vibration isolation

    Advanced Control of Active Bearings - Modelling, Design and Experiments

    Get PDF

    Active vibration control of flexible bodied railway vehicles via smart structures

    Get PDF
    Future railway vehicles are going to be designed lighter in order to achieve higher speed. Suppressing the flexible modes becomes a crucial issue for improving the ride quality of the light-weight high speed railway vehicles. The concept of smart structure brings structural damping to flexible structures by integrating smart actuators and sensors onto the structure. Smart structure eliminates the need for extensive heavy mechanical actuation systems and achieves higher performance levels through their functionality for suppressing the flexible modes. Active secondary suspension is the effective conventional approach for vibration control of the railway vehicle to improve the ride quality. But its ability in suppressing the flexible modes is limited. So it is motivated to combine active structural damping for suppressing the flexible modes and the vibration control through active secondary suspension which has an effect on both rigid and flexible modes. The side-view model of the flexible-bodied railway vehicle integrated with piezoelectric actuators and sensors is derived. The procedure for selection of placement configurations of the piezoelectric actuators and sensors using structural norms is presented. Initial control studies show that the flexibility of the vehicle body will cause a considerable degradation in ride quality if it is neglected in the design model. Centralized and decentralized control strategies with various control approaches (e.g. modal control with skyhook damping, LQG/H2 control, H_infinity control and model predictive control (MPC))are applied for the combined control of active structural damping and active suspension control. The active structural damping effectively suppresses the flexible modes as a complement to the work of the active suspension control

    Synchronous response modelling and control of an annular momentum control device

    Get PDF
    Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware
    corecore