2,064 research outputs found
Power electronics options for large wind farm integration : VSC-based HVDC transmission
This paper describes the use of voltage source converter based HVDC transmission (VSC transmission) system for grid integration of large wind farms over long distance. The wind farms can be based on either doubly-fed induction generator (DFIG) or fixed speed induction generator (FSIG). The paper describes the operation principles and control strategies of the proposed system. Automatic power balancing during network AC fault is achieved without communication between the two converters. PSCAD/EMTDC simulations are presented to demonstrate the robust performance and to validate the proposed system during various operating conditions such as variations of generation and AC fault conditions. The proposed VSC transmission system has technical and economic advantages over a conventional AC connection for integrating large wind farms over long distanc
Modelling and control of a variable-speed switched reluctance generator based wind turbine
This paper studies the system modelling and control aspects of switched reluctance generator (SRG) based variable speed wind turbines. A control system is implemented to provide proper operation of the SRG as well as power tracking capabilities for varying wind speeds. The control system for the grid side inverter that will allow the SRG to properly generate power to the system is also presented. Studies are presented of both the SRG and inverter control systems capabilities during a balanced three-phase fault. The paper will demonstrate that the SRG based wind turbine presents a feasible variable wind speed solution with good fault response capabilities
Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications
The worldwide demand for more diverse and greener energy supply has had a significant
impact on the development of wind energy in the last decades. From 2 GW in 1990,
the global installed capacity has now reached about 100 GW and is estimated to grow to
1000 GW by 2025. As wind power penetration increases, it is important to investigate its
effect on the power system. Among the various technologies available for wind energy
conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions
because it offers the advantages of reduced mechanical stress and optimised power capture
thanks to variable speed operation. This work presents the small-signal modelling and
analysis of the DFIG for power system stability studies.
This thesis starts by reviewing the mathematical models of wind turbines with DFIG
convenient for power system studies. Different approaches proposed in the literature for
the modelling of the turbine, drive-train, generator, rotor converter and external power
system are discussed. It is shown that the flexibility of the drive train should be represented
by a two-mass model in the presence of a gearbox.
In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison
is made with the conventional synchronous generators (SG) and squirrel-cage induction
generators to highlight the differences between the machines. The initialisation of the
DFIG dynamic variables and other operating quantities is then discussed. Various methods
are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative
computations in initial condition mentioned in the literature.
The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal
analysis is performed for both open-loop and closed-loop situations. The effect of parameters
and operating point variations on small signal stability is observed. For the
open-loop DFIG, conditions on machine parameters are obtained to ensure stability of
the system. For the closed-loop DFIG, it is shown that the generator electrical transients
may be neglected once the converter controls are properly tuned. A tuning procedure is
proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is
performed. It is shown that there is no common mode to the two types of generators.
The result confirms that the DFIG does not introduce negative damping to the system,
however it is also shown that the overall effect of the DFIG on the power system stability
depends on several structural factors and a general statement as to whether it improves or
detriorates the oscillatory stability of a system can not be made
Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults
Power electronic converters enable wind turbines, operating at variable
speed, to generate electricity more efficiently. Among variable speed operating
turbine generators, permanent magnetic synchronous generator (PMSG) has got
more attentions due to low cost and maintenance requirements. In addition, the
converter in a wind turbine with PMSG decouples the turbine from the power
grid, which favors them for grid codes. In this paper, the performance of
back-to-back (B2B) converter control of a wind turbine system with PMSG is
investigated on a faulty grid. The switching strategy of the grid side
converter is designed to improve voltage drop caused by the fault in the grid
while the maximum available active power of wind turbine system is injected to
the grid and the DC link voltage in the converter is regulated. The methodology
of the converter control is elaborated in details and its performance on a
sample faulty grid is assessed through simulation
Improved control strategy of DFIG-based wind turbines using direct torque and direct power control techniques
This paper presents different control strategies for a variable-speed wind energy conversion system (WECS), based on a doubly fed induction generator. Direct Torque Control (DTC) with Space-Vector Modulation is used on the rotor side converter. This control method is known to reduce the fluctuations of the torque and flux at low speeds in contrast to the classical DTC, where the frequency of switching is uncontrollable. The reference for torque is obtained from the maximum power point tracking technique of the wind turbine. For the grid-side converter, a fuzzy direct power control is proposed for the control of the instantaneous active and reactive power. Simulation results of the WECS are presented to compare the performance of the proposed and classical control approaches.Peer reviewedFinal Accepted Versio
Modal Analysis of Grid Connected Doubly-Fed Induction Generators
This paper presents the modal analysis of a gridconnected doubly fed induction generator (DFIG). The change in modal properties for different system parameters, operating points, and grid strengths are computed and observed. The results offer a better understanding of theDFIG intrinsic dynamics,which can also be useful for control design and model justification. Index Terms—Doubly fed induction generator, eigenvalue analysis, nonlinear dynamic model, small-signal stability.Published versio
Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer
© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe
- …