10,596 research outputs found

    Cylinder Deactivation

    Get PDF

    The effects of cylinder deactivation on the thermal behaviour and performance of a three cylinder spark ignition engine

    Get PDF
    A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load. For the NEDC and FTP-75 cycle, the predicted fuel savings are ∼3½ %; the benefit is lower for more transient or highly loaded cycles

    Effect of cylinder deactivation strategies on engine performances using one-dimensional simulation technique

    Get PDF
    In order to meet consumer and legislation requirements, big investments on key technology strategies have been made to ensure fuel consumption is reduced. Recent technologies for gasoline engines are lean combustion technologies (including direct injection and homogenous charged compression ignition), optimizing intake and exhaust valve timing with valve lift and also cylinder deactivation system (CDA) have been practised to improve the engine efficiency. The purpose of this study is to investigate the engine behavior when running at different cylinder deactivation (CDA) strategies. One-dimensional engine model software called GT-Power is used to predict the engine performances. Five strategies were considered namely normal mode, spark plug off mode, cylinder deactivation mode, intake normal with exhaust off mode, and intake off with exhaust normal mode. Engine performance outputs of each strategy are predicted and compared at BMEP of 3 bars with engine speed of 2500 rpm. Also, the effect of CDA strategies on in-cylinder pressure and pumping loss are performed. The study shows that all of these cylinder deactivation strategies are capable of reducing the pumping loss (PMEP) and fuel consumption, thus increasing the thermal efficiency of the engine. The results suggest that the most beneficial strategy for activating CDA is for the case whereby both the intake and exhaust valves are kept closed. This CDA mode capable of increasing brake thermal efficiency up to 22% at entire engine speeds operation. This strategy successfully reduced the BSFC. It was found that most of these cylinder deactivation strategies improve the engine performance during part load engine condition

    Investigation of cylinder deactivation strategies for better fuel consumption using 1-D simulation method

    Get PDF
    In order to meet consumer and legislation requirements, big investments on key technology strategies have been made to ensure fuel consumption is reduced. Recent technologies for gasoline engines are lean combustion technologies (including direct injection and homogenous charged compression ignition), optimizing intake and exhaust valve timing with valve lift and also cylinder deactivation system (CDA) have been practised to improve the engine efficiency. In this study, the purpose is to investigate the engine behaviour when running at different cylinder deactivation (CDA) strategies. One-dimensional engine model software called GT-Power is used to predict the engine performances. There are total of five strategies that have been studied which include normal mode, spark plug off mode, cylinder deactivation mode, intake normal with exhaust off mode, and intake off with exhaust normal mode. Engine performance outputs of each strategy are predicted and compared at BMEP of 3 bars with engine speed of 2500 rpm. Also, the effect of CDA strategies on in-cylinder pressure and pumping loss are performed. The study shows that all of these cylinder deactivation strategies are significantly reduce the pumping loss (PMEP) and fuel consumption, furthermore increasing the thermal efficiency of the engine. The results suggest that the most beneficial strategy for activating CDA is for the case whereby both the intake and exhaust valves are kept closed. This strategy successfully reduced the BSFC. It found that most of these cylinder deactivation strategies improve the engine performance during part load engine condition

    Investigation of cylinder deactivation and variable valve actuation on gasoline engine performance

    Get PDF
    Increasingly stringent regulations on gasoline engine fuel consumption and exhaust emissions require additional technology integration such as Cylinder Deactivation (CDA) and Variable valve actuation (VVA) to improve part load engine efficiency. At part load, CDA is achieved by closing the inlet and exhaust valves and shutting off the fuel supply to a selected number of cylinders. Variable valve actuation (VVA) enables the cylinder gas exchange process to be optimised for different engine speeds by changing valve opening and closing times as well as maximum valve lift. The focus of this study was the investigation of effect of the integration of the above two technologies on the performance of a gasoline engine operating at part load conditions. In this study, a 1.6 Litre in-line 4-cylinder gasoline engine is modelled on engine simulation software and simulated data is analysed to show improvements in fuel consumption, CO2 emissions, pumping losses and effects on CO and NOx emissions. A CDA and VVA operating window is identified which yields brake specific fuel consumption improvements of 10-20% against the base engine at engine speeds between 1000rpm to 3500rpm at approximately 12.5% load. Highest concentration of CO emissions was observed at between 4 to 5 bar BMEP at 4000rpm and highest concentration of NOx at the same load range but at 1000rpm.Findings based on simulation results point towards significant part load performance improvements which can be achieved by integrating cylinder deactivation and variable valve actuation on gasoline engines. Copyright © 2014 SAE International

    Three-phase packed bed reactor with an evaporating solvent—I. Experimental: the hydrogenation of 2,4,6-trinitrotoluene in methanol

    Get PDF
    In this paper we present experimental data on the three-phase hydrogenation of 2,4,6-trinitrotoluene (TNT) to triaminotoluene. The experiments are performed in a cocurrent upflow packed bed reactor. Methanol is used as an evaporating solvent. The influence of the main operating parameters, the reactor pressure, the feed temperature and the molar ratio of hydrogen to TNT in the feed, are investigated experimentally. A rapid deactivation of the catalyst was observed. The rate of deactivation was investigated by performing experiments at standardized conditions at regular time intervals and by continuous operation of the reactor. Several experiments were done to find out if the catalyst could be regenerated in situ. This regeneration proved successful: the catalyst activity was practically equal to the initial one

    Electroolfactogram (EOG) Recording in the Mouse Main Olfactory Epithelium

    Get PDF
    Olfactory sensory neurons in the main olfactory epithelium (MOE) are responsible for detecting odorants and EOG recording is a reliable approach to analyze the peripheral olfactory function. However, recently we revealed that rodent MOE can also detect the air pressure caused by airflow. The sensation of airflow pressure and odorants may function in synergy to facilitate odorant perception during sniffing. We have reported that the pressure-sensitive response in the MOE can also be assayed by EOG recording. Here we describe procedures for pressure-sensitive as well as odorant-stimulated EOG measurement in the mouse MOE. The major difference between the pressure-sensitive EOG response and the odorant-stimulated response was whether to use pure air puff or use an odorized air puff

    Effects of 3D Geometries on Cellular Gradient Sensing and Polarization

    Full text link
    During cell migration, cells become polarized, change their shape, and move in response to various internal and external cues. Cell polarization is defined through the spatio-temporal organization of molecules such as PI3K or small GTPases, and is determined by intracellular signaling networks. It results in directional forces through actin polymerization and myosin contractions. Many existing mathematical models of cell polarization are formulated in terms of reaction-diffusion systems of interacting molecules, and are often defined in one or two spatial dimensions. In this paper, we introduce a 3D reaction-diffusion model of interacting molecules in a single cell, and find that cell geometry has an important role affecting the capability of a cell to polarize, or change polarization when an external signal changes direction. Our results suggest a geometrical argument why more roundish cells can repolarize more effectively than cells which are elongated along the direction of the original stimulus, and thus enable roundish cells to turn faster, as has been observed in experiments. On the other hand, elongated cells preferentially polarize along their main axis even when a gradient stimulus appears from another direction. Furthermore, our 3D model can accurately capture the effect of binding and unbinding of important regulators of cell polarization to and from the cell membrane. This spatial separation of membrane and cytosol, not possible to capture in 1D or 2D models, leads to marked differences of our model from comparable lower-dimensional models.Comment: 31 pages, 7 figure

    Influence of Fluoride and Stress on the Electrochemical Properties of Nickel-Titanium Coils

    Get PDF
    The aim of this study was to examine the effects of fluoride and stress on the electrochemical properties of nickel-titanium coils. Forty Dentsply GAC NiTi coils were divided into four groups of ten and individually tested. Twenty coils were placed in a solution of artificial saliva, where ten of the twenty were compressed and the other ten were not stressed. The other twenty coils were placed in a 1500 ppm NaF solution, where ten were compressed and ten were not. The coils were connected to a computer driven potentiostat and three tests were conducted: open circuit potential monitoring for 2 hours, a linear polarization scan, and a cyclic polarization test. The results showed the coils to possess a more noble OCP when in artificial saliva compared to fluoride. The non-compressed, artificial saliva group possessed the greatest polarization resistance (

    Hydrogen leak detection device Patent

    Get PDF
    Development of device for detecting hydrogen in ambient environment
    corecore