9,496 research outputs found
Correctness of Velocity Evaluation of System Using Spatial Filter
In this paper, a velocity measurement method using the spatial filter is presented. Luminous emitance of the surface passing through the moving spatial filter and optical set is projected to the active area of photo-detector. The velocity determination is based on the frequency spectrum evaluation of the photo-detector output signal. The formula for velocity computing is derived first. Then, correctness of velocity evaluation in dependence on the surface and measuring system properties is discussed
Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control
Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control
Development and application of a non-Gaussian atmospheric turbulence model for use in flight simulators
A method is described for generating time histories which model the frequency content and certain non-Gaussian probability characteristics of atmospheric turbulence including the large gusts and patchy nature of turbulence. Methods for time histories using either analog or digital computation are described. A STOL airplane was programmed into a 6-degree-of-freedom flight simulator, and turbulence time histories from several atmospheric turbulence models were introduced. The pilots' reactions are described
Implementation and assessment of two density-based outlier detection methods over large spatial point clouds
Several technologies provide datasets consisting of a large number of spatial points, commonly referred to as point-clouds. These point datasets provide spatial information regarding the phenomenon that is to be investigated, adding value through knowledge of forms and spatial relationships. Accurate methods for automatic outlier detection is a key step. In this note we use a completely open-source workflow to assess two outlier detection methods, statistical outlier removal (SOR) filter and local outlier factor (LOF) filter. The latter was implemented ex-novo for this work using the Point Cloud Library (PCL) environment. Source code is available in a GitHub repository for inclusion in PCL builds. Two very different spatial point datasets are used for accuracy assessment. One is obtained from dense image matching of a photogrammetric survey (SfM) and the other from floating car data (FCD) coming from a smart-city mobility framework providing a position every second of two public transportation bus tracks. Outliers were simulated in the SfM dataset, and manually detected and selected in the FCD dataset. Simulation in SfM was carried out in order to create a controlled set with two classes of outliers: clustered points (up to 30 points per cluster) and isolated points, in both cases at random distances from the other points. Optimal number of nearest neighbours (KNN) and optimal thresholds of SOR and LOF values were defined using area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Absolute differences from median values of LOF and SOR (defined as LOF2 and SOR2) were also tested as metrics for detecting outliers, and optimal thresholds defined through AUC of ROC curves. Results show a strong dependency on the point distribution in the dataset and in the local density fluctuations. In SfM dataset the LOF2 and SOR2 methods performed best, with an optimal KNN value of 60; LOF2 approach gave a slightly better result if considering clustered outliers (true positive rate: LOF2\u2009=\u200959.7% SOR2\u2009=\u200953%). For FCD, SOR with low KNN values performed better for one of the two bus tracks, and LOF with high KNN values for the other; these differences are due to very different local point density. We conclude that choice of outlier detection algorithm very much depends on characteristic of the dataset\u2019s point distribution, no one-solution-fits-all. Conclusions provide some information of what characteristics of the datasets can help to choose the optimal method and KNN values
The status of military specifications with regard to atmospheric turbulence
The features of atmospheric disturbances that are significant to aircraft flying qualities are discussed. Next follows a survey of proposed models. Lastly, there is a discussion of the content and application of the model contained in the current flying qualities specification and the forthcoming MIL-Standard
- …