805 research outputs found

    Coping With Multiple Visual Motion Cues Under Extremely Constrained Computation Power of Micro Autonomous Robots

    Get PDF
    The perception of different visual motion cues is crucial for autonomous mobile robots to react to or interact with the dynamic visual world. It is still a great challenge for a micro mobile robot to cope with dynamic environments due to the restricted computational resources and the limited functionalities of its visual systems. In this study, we propose a compound visual neural system to automatically extract and fuse different visual motion cues in real-time using the extremely constrained computation power of micro mobile robots. The proposed visual system contains multiple bio-inspired visual motion perceptive neurons each with a unique role, for example to extract collision visual cues, darker collision cue and directional motion cues. In the embedded system, these multiple visual neurons share a similar presynaptic network to minimise the consumption of computation resources. In the postsynaptic part of the system, visual cues pass results to corresponding action neurons using lateral inhibition mechanism. The translational motion cues, which are identified by comparing pairs of directional cues, are given the highest priority, followed by the darker colliding cues and approaching cues. Systematic experiments with both virtual visual stimuli and real-world scenarios have been carried out to validate the system's functionality and reliability. The proposed methods have demonstrated that (1) with extremely limited computation power, it is still possible for a micro mobile robot to extract multiple visual motion cues robustly in a complex dynamic environment; (2) the cues extracted can be fused with a lateral inhibited postsynaptic network, thus enabling the micro robots to respond effectively with different actions, accordingly to different states, in real-time. The proposed embedded visual system has been modularised and can be easily implemented in other autonomous mobile platforms for real-time applications. The system could also be used by neurophysiologists to test new hypotheses pertaining to biological visual neural systems

    A Versatile Vision-Pheromone-Communication Platform for Swarm Robotics

    Get PDF
    This paper describes a versatile platform for swarm robotics research. It integrates multiple pheromone communication with a dynamic visual scene along with real time data transmission and localization of multiple-robots. The platform has been built for inquiries into social insect behavior and bio-robotics. By introducing a new research scheme to coordinate olfactory and visual cues, it not only complements current swarm robotics platforms which focus only on pheromone communications by adding visual interaction, but also may fill an important gap in closing the loop from bio-robotics to neuroscience. We have built a controllable dynamic visual environment based on our previously developed ColCOSΦ\Phi (a multi-pheromones platform) by enclosing the arena with LED panels and interacting with the micro mobile robots with a visual sensor. In addition, a wireless communication system has been developed to allow transmission of real-time bi-directional data between multiple micro robot agents and a PC host. A case study combining concepts from the internet of vehicles (IoV) and insect-vision inspired model has been undertaken to verify the applicability of the presented platform, and to investigate how complex scenarios can be facilitated by making use of this platform

    Temperature-based Collision Detection in Extreme Low Light Condition with Bio-inspired LGMD Neural Network

    Get PDF
    It is an enormous challenge for intelligent vehicles to avoid collision accidents at night because of the extremely poor light conditions. Thermal cameras can capture temperature map at night, even with no light sources and are ideal for collision detection in darkness. However, how to extract collision cues efficiently and effectively from the captured temperature map with limited computing resources is still a key issue to be solved. Recently, a bio-inspired neural network LGMD has been proposed for collision detection successfully, but for daytime and visible light. Whether it can be used for temperature-based collision detection or not remains unknown. In this study, we proposed an improved LGMD-based visual neural network for temperature-based collision detection at extreme light conditions. We show in this study that the insect inspired visual neural network can pick up the expanding temperature differences of approaching objects as long as the temperature difference against its background can be captured by a thermal sensor. Our results demonstrated that the proposed LGMD neural network can detect collisions swiftly based on the thermal modality in darkness; therefore, it can be a critical collision detection algorithm for autonomous vehicles driving at night to avoid fatal collisions with humans, animals, or other vehicles

    Learning vision-based agile flight: From simulation to the real world

    Get PDF

    Visual attention and swarm cognition for off-road robots

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2011Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspiração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formigas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, inspeccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Esta tese aborda o problema da modelação de atenção visual no contexto de robôs autónomos todo-o-terreno. O objectivo de utilizar mecanismos de atenção visual é o de focar a percepção nos aspectos do ambiente mais relevantes à tarefa do robô. Esta tese mostra que, na detecção de obstáculos e de trilhos, esta capacidade promove robustez e parcimónia computacional. Estas são características chave para a rapidez e eficiência dos robôs todo-o-terreno. Um dos maiores desafios na modelação de atenção visual advém da necessidade de gerir o compromisso velocidade-precisão na presença de variações de contexto ou de tarefa. Esta tese mostra que este compromisso é resolvido se o processo de atenção visual for modelado como um processo auto-organizado, cuja operação é modulada pelo módulo de selecção de acção, responsável pelo controlo do robô. Ao fechar a malha entre o processo de selecção de acção e o de percepção, o último é capaz de operar apenas onde é necessário, antecipando as acções do robô. Para fornecer atenção visual com propriedades auto-organizadas, este trabalho obtém inspi- ração da Natureza. Concretamente, os mecanismos responsáveis pela capacidade que as formi- gas guerreiras têm de procurar alimento de forma auto-organizada, são usados como metáfora na resolução da tarefa de procurar, também de forma auto-organizada, obstáculos e trilhos no campo visual do robô. A solução proposta nesta tese é a de colocar vários focos de atenção encoberta a operar como um enxame, através de interacções baseadas em feromona. Este trabalho representa a primeira realização corporizada de cognição de enxame. Este é um novo campo de investigação que procura descobrir os princípios básicos da cognição, ins- peccionando as propriedades auto-organizadas da inteligência colectiva exibida pelos insectos sociais. Logo, esta tese contribui para a robótica como disciplina de engenharia e para a robótica como disciplina de modelação, capaz de suportar o estudo do comportamento adaptável.Fundação para a Ciência e a Tecnologia (FCT,SFRH/BD/27305/2006); Laboratory of Agent Modelling (LabMag

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Towards a Dynamic Vision System - Computational Modelling of Insect Motion Sensitive Neural Systems

    Get PDF
    For motion perception, vision plays an irreplaceable role, which can extract more abundant useful movement features from an unpredictable dynamic environment compared to other sensing modalities. Nowadays, building a dynamic vision system for motion perception in a both reliable and efficient manner is still an open challenge. Millions of years of evolutionary development has provided, in nature, animals that possess robust vision systems capable of motion perception to deal with a variety of aspects of life. Insects, in particular, have a relatively smaller number of visual neurons compared to vertebrates and humans, but can still navigate smartly through visually cluttered and dynamic environments. Understanding the insects' visual processing pathways and methods thus are not only attractive to neural system modellers but also critical in providing effective solutions for future intelligent machines. Originated from biological researches in insect visual systems, this thesis investigates computational modelling of motion sensitive neural systems and potential applications to robotics. This proposes novel modelling of the locust and fly visual systems for sensing looming and translating stimuli. Specifically, the proposed models comprise collision selective neural networks of two lobula giant movement detectors (LGMD1 and LGMD2) in locusts, and translating sensitive neural networks of direction selective neurons (DSNs) in flies, as well as hybrid visual neural systems of their combinations. In all these proposed models, the functionality of ON and OFF pathways is highlighted, which separate visual processing into parallel computation. This works effectively to realise neural characteristics of both the LGMD1 and the LGMD2 in locusts and plays crucial roles in separating the different looming selectivity between the two visual neurons. Such a biologically plausible structure can also implement the fly DSNs for translational movements perception and guide fast motion tracking with a behavioural response to visual fixation. The effectiveness and flexibility of the proposed motion sensitive neural systems have been validated by systematic and comparative experiments ranging from off-line synthetic and real-world tests to on-line bio-robotic tests. The underlying characteristics and functionality of the locust LGMDs and the fly DSNs have been achieved by the proposed models. All the proposed visual models have been successfully realised on the embedded system in a vision-based ground mobile robot. The robot tests have verified the computational simplicity and efficiency of proposed bio-inspired methodologies, which hit at great potential of building neuromorphic sensors in autonomous machines for motion perception in a fast, reliable and low-energy manner

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing
    corecore