1,306,866 research outputs found
Optimal operation of combined heat and power systems: an optimization-based control strategy
The use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve. Thus, to determine the optimal operation of these systems in dynamic energy-market scenarios, operational constraints and the time-varying price profiles for both electricity and the required resources should be taken into account. In order to maximize the profit during the operation of the CHP plant, this paper proposes an optimization-based controller designed according to the Economic Model Predictive Control (EMPC) approach, which uses a non-constant time step along the prediction horizon to get a shorter step size at the beginning of that horizon while a lower resolution for the far instants. Besides, a softening of related constraints to meet the market requirements related to the sale of electric power to the grid point is proposed. Simulation results show that the computational burden to solve optimization problems in real time is reduced while minimizing operational costs and satisfying the market constraints. The proposed controller is developed based on a real CHP plant installed at the ETA research factory in Darmstadt, Germany.Peer ReviewedPostprint (author's final draft
Conic Optimization Theory: Convexification Techniques and Numerical Algorithms
Optimization is at the core of control theory and appears in several areas of
this field, such as optimal control, distributed control, system
identification, robust control, state estimation, model predictive control and
dynamic programming. The recent advances in various topics of modern
optimization have also been revamping the area of machine learning. Motivated
by the crucial role of optimization theory in the design, analysis, control and
operation of real-world systems, this tutorial paper offers a detailed overview
of some major advances in this area, namely conic optimization and its emerging
applications. First, we discuss the importance of conic optimization in
different areas. Then, we explain seminal results on the design of hierarchies
of convex relaxations for a wide range of nonconvex problems. Finally, we study
different numerical algorithms for large-scale conic optimization problems.Comment: 18 page
Information flow and optimization in transcriptional control
In the simplest view of transcriptional regulation, the expression of a gene
is turned on or off by changes in the concentration of a transcription factor
(TF). We use recent data on noise levels in gene expression to show that it
should be possible to transmit much more than just one regulatory bit.
Realizing this optimal information capacity would require that the dynamic
range of TF concentrations used by the cell, the input/output relation of the
regulatory module, and the noise levels of binding and transcription satisfy
certain matching relations. This parameter-free prediction is in good agreement
with recent experiments on the Bicoid/Hunchback system in the early Drosophila
embryo, and this system achieves ~90% of its theoretical maximum information
transmission.Comment: 5 pages, 4 figure
Online Optimization with Memory and Competitive Control
This paper presents competitive algorithms for a novel class of online optimization problems with memory. We consider a setting where the learner seeks to minimize the sum of a hitting cost and a switching cost that depends on the previous p decisions. This setting generalizes Smoothed Online Convex Optimization. The proposed approach, Optimistic Regularized Online Balanced Descent, achieves a constant, dimension-free competitive ratio. Further, we show a connection between online optimization with memory and online control with adversarial disturbances. This connection, in turn, leads to a new constant-competitive policy for a rich class of online control problems
- …