10,422 research outputs found

    Equilibria and Dynamics of a Neural Network Model for Opponent Muscle Control

    Full text link
    One of the advantages of biological skeleto-motor systems is the opponent muscle design, which in principle makes it possible to achieve facile independent control of joint angle and joint stiffness. Prior analysis of equilibrium states of a biologically-based neural network for opponent muscle control, the FLETE model, revealed that such independent control requires specialized interneuronal circuitry to efficiently coordinate the opponent force generators. In this chapter, we refine the FLETE circuit variables specification and update the equilibrium analysis. We also incorporate additional neuronal circuitry that ensures efficient opponent force generation and velocity regulation during movement.National Science Foundation (IRI-90-24877); Consejo Nacional de Ciencia y Tecnologia, Méxic

    Spiking Dynamics during Perceptual Grouping in the Laminar Circuits of Visual Cortex

    Full text link
    Grouping of collinear boundary contours is a fundamental process during visual perception. Illusory contour completion vividly illustrates how stable perceptual boundaries interpolate between pairs of contour inducers, but do not extrapolate from a single inducer. Neural models have simulated how perceptual grouping occurs in laminar visual cortical circuits. These models predicted the existence of grouping cells that obey a bipole property whereby grouping can occur inwardly between pairs or greater numbers of similarly oriented and co-axial inducers, but not outwardly from individual inducers. These models have not, however, incorporated spiking dynamics. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity to inducer configurations occur despite irregularities in spike timing across all the interacting cells. Other models have demonstrated spiking dynamics in laminar neocortical circuits, but not how perceptual grouping occurs. The current model begins to unify these two modeling streams by implementing a laminar cortical network of spiking cells whose intracellular temporal dynamics interact with recurrent intercellular spiking interactions to quantitatively simulate data from neurophysiological experiments about perceptual grouping, the structure of non-classical visual receptive fields, and gamma oscillations.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001); Defense Advanced Research Project Agency (HR001-09-C-0011

    A neural blackboard architecture of sentence structure

    Get PDF
    We present a neural architecture for sentence representation. Sentences are represented in terms of word representations as constituents. A word representation consists of a neural assembly distributed over the brain. Sentence representation does not result from associations between neural word assemblies. Instead, word assemblies are embedded in a neural architecture, in which the structural (thematic) relations between words can be represented. Arbitrary thematic relations between arguments and verbs can be represented. Arguments can consist of nouns and phrases, as in sentences with relative clauses. A number of sentences can be stored simultaneously in this architecture. We simulate how probe questions about thematic relations can be answered. We discuss how differences in sentence complexity, such as the difference between subject-extracted versus object-extracted relative clauses and the difference between right-branching versus center-embedded structures, can be related to the underlying neural dynamics of the model. Finally, we illustrate how memory capacity for sentence representation can be related to the nature of reverberating neural activity, which is used to store information temporarily in this architecture
    corecore