961 research outputs found

    Establishment of Management Plan by Sighting Reports of Asiatic Black Bears (Ursus thibetanus): A Case Study in Oze National Park, Central Japan

    Get PDF
    In order to make efficient plans for wildlife management, we propose here how to establish the plan for the bear management using sighting reports of Oze National Park (Oze NP), Central Japan. A total of 574 sighting reports gathered from 2004 to 2009 in Oze NP were analyzed. Firstly, analyzing 36 of 236 dangerous bear responses to visitors revealed that bears in Oze NP were not habituated to visitors or their foods. This suggests that all efforts could be put into preventing from making “nuisance bears” in Oze NP. Secondly, in order to determine proper assignation of staffs, the pattern of bear occurrences was analyzed. Bears occurred more frequently in August and relatively frequently in June. Thus, the larger number of staffs should be assigned these months. Core areas were determined by the 50% karnel. Since core area was smaller in August, a few staffs should stand by at Yamanohana area. In June, the number of sighting and core area was larger only in early periods; thus, one staff should stand by at Todengoya and another at Yamanohana area in early June

    The Establishment of the National Park System in Japan (2)

    Get PDF
    This paper, a continuation from the preceding Part 1. presents an attempt to analyse the process by which a national park system was established in Japan in the 1930s. It lays particular emphasis on clarifying the state of the conflicts between tourism and nature conservation in the national parks of Japan during the same decade. The original twelve national parks were opened in the 1930s. This study examines the processes of formation of Akan National Park, Daisetsuan National Park, Towada National Park, and Nikko National Park. The initiative for the foundation of the national parks in Japan was furthered by the National Park Association of Japan mainly as a means for increasing the popularity of tourism. By contrast, however, Towada National Park and Nikko National Park ―especially the Oze area of the latter ―were established in the interests of nature conservation rather than of tourism

    The vertical transport of methane from different potential emission types on Mars

    Get PDF
    The contrasting evolutionary behavior of the vertical profile of methane from three potential release scenarios is analysed using a global circulation model with assimilated temperature profiles. Understanding the evolving methane distribution is essential for interpretation of future retrievals of the methane vertical profile taken by instruments on the ExoMars Trace Gas Orbiter spacecraft. We show that at methane release rates constrained by previous observations and modelling studies, discriminating whether the methane source is a sustained or instantaneous surface emission requires at least ten sols of tracking the emission. A methane source must also be observed within five to ten sols of the initial emission to distinguish whether the emission occurs directly at the surface or within the atmosphere via destabilization of metastable clathrates. Assimilation of thermal data is shown to be critical for the most accurate back-tracking of an observed methane plume to its origin

    Ultramafic geoecology of South and Southeast Asia

    Get PDF
    Globally, ultramafic outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafic regoliths are generally nutrient-deficient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occurrences of ultramafic regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of endemism, and the species most threatened. However, site-specific studies provide insights to the ultramafic geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafic regions differs substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafic mountaintops, where the combined forces of edaphic and climatic factors intersect, obligate ultramafic species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafic-associated habitats in the region. The geoecology of the large ultramafic outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation

    Ultramafic geoecology of South and Southeast Asia

    Get PDF
    Globally, ultramafic outcrops are renowned for hosting floras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafic regoliths are generally nutrient-deficient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occurrences of ultramafic regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of endemism, and the species most threatened. However, site-specific studies provide insights to the ultramafic geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafic regions differs substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafic mountaintops, where the combined forces of edaphic and climatic factors intersect, obligate ultramafic species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafic-associated habitats in the region. The geoecology of the large ultramafic outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation

    Biology of ultramafic rocks and soils: research goals for the future

    Get PDF
    At this, the 6th International Conference on Serpentine Ecology, it seems timely to review briefly the present status of the field and to project the needs for future research. Although a great deal of serpentine research was done prior to 1960, as summarized by Krause (1958) and discussed briefly by Brooks (1987), much of our progress in learning how serpentine geology affects plant and animal life occurred in the mid- to late 20th century. In that era, it was the landmark studies of several scientists worldwide that initiated a meteoric increase in published serpentine research. Key players in setting the stage for this burgeoning output included pioneers in Europe (e.g., John Proctor, Stan Woodell, Ornella Vergnano, and Olof Rune), North America (e.g., Herbert Mason, Robert Whittaker, Hans Jenny, Richard Walker, and Arthur Kruckeberg); and elsewhere (e.g., Robert Brooks, Alan Baker, Roger Reeves, and Tanguy Jaffré). All made notable contributions to understanding the “serpentine syndrome.” Despite the flourishing of serpentine studies in recent years, there is much “unfinished business.” After all, an axiom of science is that there is an unending quest for answers. In the many subdisciplines of geology and the soil and plant sciences, serpentine areas still hold mysteries— unsolved questions and challenges for the future. We now examine some of them, organized by the five major topic areas covered by the conference (Geology and Soils, Biota, Ecology and Evolution, Physiology and Genetics, and Applied Ecology), and point out how some of the contributions at the conference, and some that are included in this Proceedings Special Issue, address them

    Simulating the hydrology of small coastal ecosystems in conditions of limited data

    Get PDF
    Hydrology / Simulation / Ecosystems / Lagoons / Estuaries / Irrigation effects / Sri Lanka / South Africa / Karagan Lagoon / Bundala Lagoon

    The Case and Context for Atmospheric Methane as an Exoplanet Biosignature

    Full text link
    Methane has been proposed as an exoplanet biosignature. Imminent observations with the James Webb Space Telescope may enable methane detections on potentially habitable exoplanets, so it is essential to assess in what planetary contexts methane is a compelling biosignature. Methane's short photochemical lifetime in terrestrial planet atmospheres implies that abundant methane requires large replenishment fluxes. While methane can be produced by a variety of abiotic mechanisms such as outgassing, serpentinizing reactions, and impacts, we argue that, in contrast to an Earth-like biosphere, known abiotic processes cannot easily generate atmospheres rich in CH4_4 and CO2_2 with limited CO due to the strong redox disequilibrium between CH4_4 and CO2_2. Methane is thus more likely to be biogenic for planets with 1) a terrestrial bulk density, high mean-molecular-weight and anoxic atmosphere, and an old host star; 2) an abundance of CH4_4 that implies surface fluxes exceeding what could be supplied by abiotic processes; and 3) atmospheric CO2_2 with comparatively little CO.Comment: 10 pages, 5 figures, 15 pages Supplementary Information, 3 Supplementary Figure
    corecore