5,807 research outputs found
A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.
The "connectome," a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond
Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification
There is no consensus on how to construct structural brain networks from
diffusion MRI. How variations in pre-processing steps affect network
reliability and its ability to distinguish subjects remains opaque. In this
work, we address this issue by comparing 35 structural connectome-building
pipelines. We vary diffusion reconstruction models, tractography algorithms and
parcellations. Next, we classify structural connectome pairs as either
belonging to the same individual or not. Connectome weights and eight
topological derivative measures form our feature set. For experiments, we use
three test-retest datasets from the Consortium for Reliability and
Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare
pairwise classification results to a commonly used parametric test-retest
measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure
Focused Proofreading: Efficiently Extracting Connectomes from Segmented EM Images
Identifying complex neural circuitry from electron microscopic (EM) images
may help unlock the mysteries of the brain. However, identifying this circuitry
requires time-consuming, manual tracing (proofreading) due to the size and
intricacy of these image datasets, thus limiting state-of-the-art analysis to
very small brain regions. Potential avenues to improve scalability include
automatic image segmentation and crowd sourcing, but current efforts have had
limited success. In this paper, we propose a new strategy, focused
proofreading, that works with automatic segmentation and aims to limit
proofreading to the regions of a dataset that are most impactful to the
resulting circuit. We then introduce a novel workflow, which exploits
biological information such as synapses, and apply it to a large dataset in the
fly optic lobe. With our techniques, we achieve significant tracing speedups of
3-5x without sacrificing the quality of the resulting circuit. Furthermore, our
methodology makes the task of proofreading much more accessible and hence
potentially enhances the effectiveness of crowd sourcing
Decoupling of brain function from structure reveals regional behavioral specialization in humans
The brain is an assembly of neuronal populations interconnected by structural
pathways. Brain activity is expressed on and constrained by this substrate.
Therefore, statistical dependencies between functional signals in directly
connected areas can be expected higher. However, the degree to which brain
function is bound by the underlying wiring diagram remains a complex question
that has been only partially answered. Here, we introduce the
structural-decoupling index to quantify the coupling strength between structure
and function, and we reveal a macroscale gradient from brain regions more
strongly coupled, to regions more strongly decoupled, than expected by
realistic surrogate data. This gradient spans behavioral domains from
lower-level sensory function to high-level cognitive ones and shows for the
first time that the strength of structure-function coupling is spatially
varying in line with evidence derived from other modalities, such as functional
connectivity, gene expression, microstructural properties and temporal
hierarchy
Ensemble tractography
Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wandell, Brian A.. University of Stanford; Estados UnidosFil: Pestilli, Franco. Indiana University; Estados Unido
Annotating Synapses in Large EM Datasets
Reconstructing neuronal circuits at the level of synapses is a central
problem in neuroscience and becoming a focus of the emerging field of
connectomics. To date, electron microscopy (EM) is the most proven technique
for identifying and quantifying synaptic connections. As advances in EM make
acquiring larger datasets possible, subsequent manual synapse identification
({\em i.e.}, proofreading) for deciphering a connectome becomes a major time
bottleneck. Here we introduce a large-scale, high-throughput, and
semi-automated methodology to efficiently identify synapses. We successfully
applied our methodology to the Drosophila medulla optic lobe, annotating many
more synapses than previous connectome efforts. Our approaches are extensible
and will make the often complicated process of synapse identification
accessible to a wider-community of potential proofreaders
Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion
Many diffusion MRI researchers, including the Human Connectome Project (HCP),
acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum
imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets
are not readily accessible to high angular resolution diffusion imaging (HARDI)
analysis methods that are popular in connectomics analysis. Here we introduce a
scheme conversion approach that transforms multishell and DSI data into their
corresponding HARDI representations, thereby empowering HARDI-based analytical
methods to make use of data acquired using non-HARDI approaches. This method
was evaluated on both phantom and in-vivo human data sets by acquiring
multishell, DSI, and HARDI data simultaneously, and comparing the converted
HARDI, from non-HARDI methods, with the original HARDI data. Analysis on the
phantom shows that the converted HARDI from DSI and multishell data strongly
predicts the original HARDI (correlation coefficient > 0.9). Our in-vivo study
shows that the converted HARDI can be reconstructed by constrained spherical
deconvolution, and the fiber orientation distributions are consistent with
those from the original HARDI. We further illustrate that our scheme conversion
method can be applied to HCP data, and the converted HARDI do not appear to
sacrifice angular resolution. Thus this novel approach can benefit all
HARDI-based analysis approaches, allowing greater analytical accessibility to
non-HARDI data, including data from the HCP
- …