6 research outputs found
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A deep survey of the Large Magellanic Cloud at ~0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over ~2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ~2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1-10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A deep survey of the Large Magellanic Cloud at ~0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over ~2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ~2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1-10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude withi
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A deep survey of the Large Magellanic Cloud at ∼0.1–100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3–2.4 pending a flux increase by a factor of >3–4 over ∼2015–2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1–10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro–Frenk–White profiles
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A. Acharyya et al.A deep survey of the Large Magellanic Cloud at ∼0.1–100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3–2.4 pending a flux increase by a factor of >3–4 over ∼2015–2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1–10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro–Frenk–White profiles.We gratefully acknowledge financial support from the following agencies and organizations: State Committee of Science of Armenia, Armenia; The Australian Research Council, Astronomy Australia Ltd, The University of Adelaide, Australian National University, Monash University, The University of New South Wales, The University of Sydney, Western Sydney University, Australia; Federal Ministry of Education, Science and Research, and Innsbruck University, Austria; Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação de Apoio à Ciência, Tecnologia e Inovação do Paraná – Fundação Araucária, Ministry of Science, Technology, Innovations and Communications (MCTIC), Brasil; Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018, Bulgaria; The Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency, Canada; CONICYT-Chile grants CATA AFB 170002, ANID PIA/APOYO AFB 180002, ACT 1406, FONDECYT-Chile grants, 1161463, 1170171, 1190886, 1171421, 1170345, 1201582, Gemini-ANID 32180007, Chile; Croatian Science Foundation, Rudjer Boskovic Institute, University of Osijek, University of Rijeka, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; Ministry of Education, Youth and Sports, MEYS LM2015046, LM2018105, LTT17006, EU/MEYS CZ.02.1.01/0.0/0.0/16_013/0001403, CZ.02.1.01/0.0/0.0/18_046/0016007 and CZ.02.1.01/0.0/0.0/16_019/0000754, Czech Republic; Academy of Finland (grants 317636 and 320045), Finland; Ministry of Higher Education and Research, CNRS-INSU and CNRS-IN2P3, CEA-Irfu, ANR, Regional Council Ile de France, Labex ENIGMASS, OCEVU, OSUG2020 and P2IO, France; Max Planck Society, BMBF, DESY, Helmholtz Association, Germany; Department of Atomic Energy, Department of Science and Technology, India; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), MIUR, Istituto Nazionale di Astrofisica (INAF-OABRERA) Grant Fondazione Cariplo/Regione Lombardia ID 2014-1980/RST_ERC, Italy; ICRR, University of Tokyo, JSPS, MEXT, Japan; Netherlands Research School for Astronomy (NOVA), Netherlands Organization for Scientific Research (NWO), Netherlands; University of Oslo, Norway; Ministry of Science and Higher Education, DIR/WK/2017/12, the National Centre for Research and Development and the National Science Centre, UMO-2016/22/M/ST9/00583, Poland; Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, J1-9146, J1-1700, N1-0111, and the Young Researcher programme, Slovenia; South African Department of Science and Technology and National Research Foundation through the South African Gamma-Ray Astronomy Programme, South Africa; The Spanish groups acknowledge the Spanish Ministry of Science and Innovation and the Spanish Research State Agency (AEI) through grants AYA2016-79724-C4-1-P, AYA2016-80889-P, AYA2016-76012-C3-1-P, BES-2016-076342, FPA2017-82729-C6-1-R, FPA2017-82729-C6-2-R, FPA2017-82729-C6-3-R, FPA2017-82729-C6-4-R, FPA2017-82729-C6-5-R, FPA2017-82729-C6-6-R, PGC2018-095161-B-I00, PGC2018-095512-B-I00, PID2019-107988GB-C22; the ‘Centro de Excelencia Severo Ochoa’ programme through grants no. SEV-2016-0597, SEV-2016-0588, SEV-2017-0709, CEX2019-000920-S; the ‘Unidad de Excelencia MarÃa de Maeztu’ programme through grant no. MDM-2015-0509; the ‘Ramón y Cajal’ programme through grants RYC-2013-14511, RYC-2017-22665; and the MultiDark Consolider Network FPA2017-90566-REDC. They also acknowledge the Atracción de Talento contract no. 2016-T1/TIC-1542 granted by the Comunidad de Madrid; the ‘Postdoctoral Junior Leader Fellowship’ programme from La Caixa Banking Foundation, grants no. LCF/BQ/LI18/11630014 and LCF/BQ/PI18/11630012; the ‘Programa Operativo’ FEDER 2014–2020, ConsejerÃa de EconomÃa y Conocimiento de la Junta de AndalucÃa (Ref. 1257737), PAIDI 2020 (Ref. P18-FR-1580) and Universidad de Jaén; ‘Programa Operativo de Crecimiento Inteligente’ FEDER 2014-2020 (Ref. ESFRI-2017-IAC-12), Ministerio de Ciencia e Innovación, 15 per cent co-financed by ConsejerÃa de EconomÃa, Industria, Comercio y Conocimiento del Gobierno de Canarias; the Spanish AEI EQC2018-005094-P FEDER 2014–2020; the European Union’s ‘Horizon 2020’ research and innovation programme under Marie Sklodowska-Curie grant agreement no. 665919; and the ESCAPE project with grant no. GA:824064; Swedish Research Council, Royal Physiographic Society of Lund, Royal Swedish Academy of Sciences, The Swedish National Infrastructure for Computing (SNIC) at Lunarc (Lund), Sweden; State Secretariat for Education, Research and Innovation (SERI) and Swiss National Science Foundation (SNSF), Switzerland; Durham University, Leverhulme Trust, Liverpool University, University of Leicester, University of Oxford, Royal Society, Science and Technology Facilities Council, UK; U.S. National Science Foundation, U.S. Department of Energy, Argonne National Laboratory, Barnard College, University of California, University of Chicago, Columbia University, Georgia Institute of Technology, Institute for Nuclear and Particle Astrophysics (INPAC-MRPI programme), Iowa State University, the Smithsonian Institution, Washington University McDonnell Center for the Space Sciences, The University of Wisconsin and the Wisconsin Alumni Research Foundation, USA. This research has made use of the CTA instrument response functions provided by the CTA Consortium and Observatory, see http://www.cta-observatory.org/science/ctao-performance/ for more details. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 262053 and no. 317446. This project is receiving funding from the European Union’s Horizon 2020 research and innovation programs under agreement no. 676134. We acknowledge financial support from the French Agence Nationale de la Recherche under reference ANR-19-CE31-0014 (GAMALO project) and the Italian grant 2017W4HA7S ‘NAT-NET: Neutrino and Astroparticle Theory Network’ (PRIN 2017) funded by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), and Iniziativa Specifica TAsP of INFN.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2019-000920-S).Peer reviewe