1,328 research outputs found
Conservative management of retinoblastoma : Challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity"
Correction: Volume: 78 Article Number: 100857 DOI: 10.1016/j.preteyeres.2020.100857 Published: SEP 2020Retinoblastoma is lethal by metastasis if left untreated, so the primary goal of therapy is to preserve life, with ocular survival, visual preservation and quality of life as secondary aims. Historically, enucleation was the first successful therapeutic approach to decrease mortality, followed over 100 years ago by the first eye salvage attempts with radiotherapy. This led to the empiric delineation of a window for conservative management subject to a "state of metastatic grace" never to be violated. Over the last two decades, conservative management of retinoblastoma witnessed an impressive acceleration of improvements, culminating in two major paradigm shifts in therapeutic strategy. Firstly, the introduction of systemic chemotherapy and focal treatments in the late 1990s enabled radiotherapy to be progressively abandoned. Around 10 years later, the advent of chemotherapy in situ, with the capitalization of new routes of targeted drug delivery, namely intra-arterial, intravitreal and now intracameral injections, allowed significant increase in eye preservation rate, definitive eradication of radiotherapy and reduction of systemic chemotherapy. Here we intend to review the relevant knowledge susceptible to improve the conservative management of retinoblastoma in compliance with the "state of metastatic grace", with particular attention to (i) reviewing how new imaging modalities impact the frontiers of conservative management, (ii) dissecting retinoblastoma genesis, growth patterns, and intraocular routes of tumor propagation, (iii) assessing major therapeutic changes and trends, (iv) proposing a classification of relapsing retinoblastoma, (v) examining treatable/preventable disease-related or treatment-induced complications, and (vi) appraising new therapeutic targets and concepts, as well as liquid biopsy potentiality.Peer reviewe
Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells
<p>Abstract</p> <p>Background</p> <p>Maintaining the correct balance of proliferation versus differentiation in retinal progenitor cells (RPCs) is essential for proper development of the retina. The cell cycle regulator cyclin D1 is expressed in RPCs, and mice with a targeted null allele at the cyclin D1 locus (<it>Ccnd1</it><sup>-/-</sup>) have microphthalmia and hypocellular retinas, the latter phenotype attributed to reduced RPC proliferation and increased photoreceptor cell death during the postnatal period. How cyclin D1 influences RPC behavior, especially during the embryonic period, is unclear.</p> <p>Results</p> <p>In this study, we show that embryonic RPCs lacking cyclin D1 progress through the cell cycle at a slower rate and exit the cell cycle at a faster rate. Consistent with enhanced cell cycle exit, the relative proportions of cell types born in the embryonic period, such as retinal ganglion cells and photoreceptor cells, are increased. Unexpectedly, cyclin D1 deficiency decreases the proportions of other early born retinal neurons, namely horizontal cells and specific amacrine cell types. We also found that the laminar positioning of horizontal cells and other cell types is altered in the absence of cyclin D1. Genetically replacing cyclin D1 with cyclin D2 is not efficient at correcting the phenotypes due to the cyclin D1 deficiency, which suggests the D-cyclins are not fully redundant. Replacement with cyclin E or inactivation of cyclin-dependent kinase inhibitor p27Kip1 restores the balance of RPCs and retinal cell types to more normal distributions, which suggests that regulation of the retinoblastoma pathway is an important function for cyclin D1 during embryonic retinal development.</p> <p>Conclusion</p> <p>Our findings show that cyclin D1 has important roles in RPC cell cycle regulation and retinal histogenesis. The reduction in the RPC population due to a longer cell cycle time and to an enhanced rate of cell cycle exit are likely to be the primary factors driving retinal hypocellularity and altered output of precursor populations in the embryonic <it>Ccnd1</it><sup>-/- </sup>retina.</p
Naturally death-resistant precursor cells revealed as the origin of retinoblastoma
AbstractThe molecular mechanisms and the cell-of-origin leading to retinoblastoma are not well defined. In this issue of Cancer Cell, Bremner and colleagues describe the first inheritable model of retinoblastoma, revealing that loss of the pocket proteins pRb and p107 deregulates cell cycle exit in retinal precursors. The authors show that a subset of these precursors contain an inherent resistance to apoptosis, and that while most terminally differentiate, some are likely to acquire additional mutations, leading to tumor formation. Thus, this work defines the cell-of-origin of retinoblastoma and suggests that mutations giving increased proliferative capacity are required for retinoblastoma development
Insights from mouse models into human retinoblastoma
Novel murine models of retinoblastoma based on Rb gene deletion in concert with inactivation of Rb family members have recently been developed. These new Rb knockout models of retinoblastoma provide excellent tools for pre-clinical studies and for the exploration of the genetics of tumorigenesis driven by RB inactivation. This review focuses on the developmental consequences of Rb deletion in the retina and the genetic interactions between Rb and the two other members of the pocket protein family, p107 (Rbl1) and p130 (Rbl2). There is increasing appreciation that homozygous RB mutations are insufficient for human retinoblastoma. Identifying and understanding secondary gene alterations that cooperate with RB inactivation in tumorigenesis may be facilitated by mouse models. Recent investigation of the p53 pathway in retinoblastoma, and evidence of spatial topology to early murine retinoblastoma are also discussed in this review
Doctor of Philosophy
dissertationDuring nervous system development, progenitor cells multiply under the control of the cell cycle pathway. When they are poised to differentiate, they withdraw from the cell cycle to form appropriate neuronal cell types. Cell cycle regulation is therefore closely intertwined with progenitor proliferation and neurogenesis in the developing nervous system and often, common factors and pathways are utilized in these processes. Two properties of neuronal progenitors can be critical for proper nervous system development: the time they take to complete one cell cycle, and the exact timing of their withdrawal/exit from the cell cycle to form neurons. Understanding how these properties can be manipulated to influence progenitor cell proliferation and neurogenesis can be invaluable for devising therapeutic strategies involving neuronal stem/progenitor cells. Retina, the primary tissue for vision, is an excellent model system for studying nervous system development and neuronal progenitor cell biology. To gain potential insights into the issues described above, this dissertation focuses on the role of the cell cycle regulators the D-cyclins, Cyclin D1 (Ccnd1) and Cyclin D3 (Ccnd3), during retinal development and characterizes the retinal phenotypes of Ccnd1 and Ccnd3 knockout mice. Chapter 1 is an introduction to retinal development and sets up the relevant questions addressed here. Chapter 2 is a reprint of a published journal article titled, "Cyclin D1 fine-tunes iv the neurogenic output of embryonic retinal progenitor cells." The study shows that during mouse embryonic development, CCND1 expression in retinal progenitor cells (RPCs) is critical for maintenance of their cell cycle time and also for their timing of exit from the cell cycle. Further, CCND1 ensures that the correct complements of early-born retinal neurons are generated from progenitors. Chapter 3 deals with the role of D-cyclins during postnatal retina development. The study shows that CCND1 also influences the production rate of late-born retinal cell types. Unexpectedly, although Ccnd1 null retinas experience progenitor cell depletion during development, proliferation, and neurogenesis persist well beyond the normal period of retinal histogenesis in mutant retinas. Further, Ccnd3 is unable to compensate for Ccnd1's role in regulation of cell cycle time and cell cycle withdrawal. Chapter 4 discusses the implications and relevance of the above studies. Future directions for these studies are also outlined
Kif14 overexpression accelerates murine retinoblastoma development
The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo
Recommended from our members
More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma
Retinoblastoma (RB), a childhood neoplasia of the retinoblasts, can occur unilaterally or bilaterally, with one or multiple foci per eye. RB is associated with somatic loss of function of both alleles of the tumor suppressor gene RB1. Hereditary forms emerge due to germline loss of function mutations in RB1 alleles. RB has long been the prototypic “model” cancer ever since Knudson's “two-hit” hypothesis. However, a simple two-hit model for RB is challenged by an increasing number of studies documenting additional hits that contribute to RB development. Here we review the genetics and epigenetics of RB with a focus on the role of small non-coding RNAs (microRNAs) and on novel findings indicating the relevance of DNA methylation in the development and prognosis of this neoplasia. Studies point to an elaborated landscape of genetic and epigenetic complexity, in which a number of events and pahtways play crucial roles in the origin and prognosis of RB. These include roles for microRNAs, inprinted loci, and parent-of-origin contributions to RB1 regulation and RB progression. This complexity is also manifested in the structure of the RB1 locus itself: it includes numerous repetitive DNA segments and retrotransposon insertion elements, some of which are actively transcribed from the RB1 locus. Altogether, we conclude that RB1 loss of function represents the tip of an iceberg of events that determine RB development, progression, severity, and disease risk. Comprehensive assessment of personalized RB risk will require genetic and epigenetic evaluations beyond RB1 protein coding sequences
Retinoblastoma, the visible CNS tumor: A review
The pediatric ocular cancer retinoblastoma is the only central nervous system (CNS) tumor readily observed without specialized equipment: it can be seen by, and in, the naked eye. This accessibility enables unique imaging modalities. Here, we review this cancer for a neuroscience audience, highlighting these clinical and research imaging options, including fundus imaging, optical coherence tomography, ultrasound, and magnetic resonance imaging. We also discuss the subtype of retinoblastoma driven by the MYCN oncogene more commonly associated with neuroblastoma, and consider trilateral retinoblastoma, in which an intracranial tumor arises along with ocular tumors in patients with germline RB1 gene mutations. Retinoblastoma research and clinical care can offer insights applicable to CNS malignancies, and also benefit from approaches developed elsewhere in the CNS
- …