445,509 research outputs found
A Molecular Biology Database Digest
Computational Biology or Bioinformatics has been defined as the application of mathematical
and Computer Science methods to solving problems in Molecular Biology that require large scale
data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential
role in Computational Biology research and development. This paper introduces into current
Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the
integration of Molecular Biology data from different sources. This paper is primarily intended
for an audience of computer scientists with a limited background in Biology
Computational challenges of systems biology
Progress in the study of biological systems such as the heart, brain, and liver will require computer scientists to work closely with life scientists and mathematicians. Computer science will play a key role in shaping the new discipline of systems biology and addressing the significant computational challenges it poses
Computational inference in systems biology
Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem. The computational costs associated with repeatedly solving the ODEs are often high. Aimed at reducing this cost, new concepts using gradient matching have been proposed. This paper combines current adaptive gradient matching approaches, using Gaussian processes, with a parallel tempering scheme, and conducts a comparative evaluation with current methods used for parameter inference in ODEs
Artificial in its own right
Artificial Cells, , Artificial Ecologies, Artificial Intelligence, Bio-Inspired Hardware Systems, Computational Autopoiesis, Computational Biology, Computational Embryology, Computational Evolution, Morphogenesis, Cyborgization, Digital Evolution, Evolvable Hardware, Cyborgs, Mathematical Biology, Nanotechnology, Posthuman, Transhuman
MACBenAbim: A Multi-platform Mobile Application for searching keyterms in Computational Biology and Bioinformatics
Computational biology and bioinformatics are gradually gaining grounds in Africa and other developing nations of the world.
However, in these countries, some of the challenges of computational biology and bioinformatics education are inadequate infrastructures, and lack of readily-available complementary and motivational tools to support learning as well as research. This has lowered the morale of many promising undergraduates, postgraduates and researchers from aspiring to undertake future study in these fields. In this paper, we developed and described MACBenAbim (Multi-platform Mobile Application for Computational Biology and Bioinformatics), a flexible user-friendly tool to search for, define and describe the meanings of keyterms in computational biology and bioinformatics, thus expanding the frontiers of knowledge of the users. This tool also has the capability of achieving visualization of results on a mobile multi-platform context
Bits from Biology for Computational Intelligence
Computational intelligence is broadly defined as biologically-inspired
computing. Usually, inspiration is drawn from neural systems. This article
shows how to analyze neural systems using information theory to obtain
constraints that help identify the algorithms run by such systems and the
information they represent. Algorithms and representations identified
information-theoretically may then guide the design of biologically inspired
computing systems (BICS). The material covered includes the necessary
introduction to information theory and the estimation of information theoretic
quantities from neural data. We then show how to analyze the information
encoded in a system about its environment, and also discuss recent
methodological developments on the question of how much information each agent
carries about the environment either uniquely, or redundantly or
synergistically together with others. Last, we introduce the framework of local
information dynamics, where information processing is decomposed into component
processes of information storage, transfer, and modification -- locally in
space and time. We close by discussing example applications of these measures
to neural data and other complex systems
Computational Cancer Biology: An Evolutionary Perspective
ISSN:1553-734XISSN:1553-735
Open source bioimage informatics for cell biology
Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery
Essential guidelines for computational method benchmarking
In computational biology and other sciences, researchers are frequently faced with a choice between several computational methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different methods using well-characterized benchmark datasets, to determine the strengths of each method or to provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking studies must be carefully designed and implemented to provide accurate, unbiased, and informative results. Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking analyses, based on our experiences in computational biology
- …