200,257 research outputs found
Experimental investigation of impact on composite laminates with protective layers
This paper presents an experimental study of low energy impacts on composite plates covered with a protective layer. In service, composite materials are subjected to low energy impacts. Such impacts can generate damage in the material that results in significant reduction in material strength. In order to reduce the damage severity, one solution is to add a mechanical protection on composite structures. The protection layer is made up of a low density energy absorbent material (hollow spheres) of a certain thickness and a thin layer of composite laminate (Kevlar). Energy absorption ability of these protective layers can be deduced from the load/displacement impact curves. First, two configurations of protection are tested on an aluminium plate in order to identify their performance against impact, then the same are tested on composite plates. Test results from force–displacement curves and C-scan control are compared and discussed and finally a comparison of impact on composite plates with and without protection is made for different configurations
Symmetries in laminated composite plates
The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis
Rubber Impact on 3D Textile Composites
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools
Nonlinear analyses of composite aerospace structures in sonic fatigue
The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plans of three random response research topics are discussed, namely acoustics-structure interactions using boundary/finite element methods, nonlinear vibrations of beams and composite plates under harmonic and random excitations, and numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading
Impact on multilayered composite plates
Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated
Impact damage of composite plates
A simple model to study low velocity transverse impact of thin plates made of fiber-reinforced composite material, in particular T300/5208 graphite-epoxy was discussed. This model predicts the coefficient of restitution, which is a measure of the energy absorbed by the target during an impact event. The model is constructed on the assumption that the plate is inextensible in the fiber direction and that the material is incompressible in the z-direction. Such a plate essentially deforms by shear, hence this model neglects bending deformations of the plate. The coefficient of restitution is predicted to increase with large interlaminar shear strength and low transverse shear modulus of the laminate. Predictions are compared with the test results of impacted circular and rectangular clamped plates. Experimentally measured values of the coefficient of restitution are found to agree with the predicted values within a reasonable error
Initiation and propagation mechanisms of progressive crushing in carbon-epoxy laminated plates
This article presents original experiments that enhance the understanding of the mechanisms that drive the progressive crushing of fiber-reinforced laminated composite materials and their energy absorption capability. An innovative experimental fixture has been created in order to obtain detailed monitoring of quasi-static and dynamic crushing of laminated plates. The fixture enables the development of a regular crushing front through the whole width of the plate, without parasite rupture modes, and the real-time
observation of this front with a high speed camera. Results of experimental works on fabric and unidirectional Carbon-Epoxy laminated composite plates are exposed. The obtained crushing modes are analysed, their stability and energy-absorbing capability are discussed
Evaluation of MARC for the analysis of rotating composite blades
The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades
- …