5,489 research outputs found
Nonlinearity and Noise Effects in Multi-level Signal Millimeter-Wave over Fiber Transmission using Single- and Dual-Wavelength Modulation
We transmit multilevel quadrature amplitude modulation (QAM) data-IEEE 802.16 schemes-at 20 MSps and an orthogonal frequency-division multiplexing (OFDM) 802.11 g signal (54 Mbps) with a 25 GHz millimeter-wave over fiber system, which employs a dual wavelength source, over 20 km of single mode fiber. Downlink data transmission is successfully demonstrated over both optical and wireless (up to 12 m) paths with good error vector magnitude. An analysis of two different schemes, in which data is applied to one (single) and both (dual) of the wavelengths of a dual wavelength source, is carried out. The system performance is analyzed through simulation and a good match with experimental results is obtained. The analysis investigates the impact of Mach-Zehnder modulator (MZM) and RF amplifier nonlinearity and various noise sources, such as laser relative intensity noise, amplified spontaneous emission, thermal, and shot noise. A comparison of single carrier QAM IEEE 802.16 and OFDM in terms of their sensitivity to the distortions from MZM and RF amplifier nonlinearity is also presented
High Speed Chaos in Optical Feedback System with Flexible Timescales
We describe a new opto-electronic device with time-delayed feedback that uses
a Mach-Zehnder interferometer as passive nonlinearity and a semiconductor laser
as a current-to-optical-frequency converter. Bandlimited feedback allows tuning
of the characteristic time scales of both the periodic and high dimensional
chaotic oscillations that can be generated with the device. Our implementation
of the device produces oscillations in the frequency range of tens to hundreds
of MHz. We develop a model and use it to explore the experimentally observed
Andronov-Hopf bifurcation of the steady state and to estimate the dimension of
the chaotic attractor.Comment: 7 pages, 6 figures, to be published in IEEE J. Quantum Electro
Mid-infrared quantum optics in silicon
Applied quantum optics stands to revolutionise many aspects of information
technology, provided performance can be maintained when scaled up. Silicon
quantum photonics satisfies the scaling requirements of miniaturisation and
manufacturability, but at 1.55 m it suffers from unacceptable linear and
nonlinear loss. Here we show that, by translating silicon quantum photonics to
the mid-infrared, a new quantum optics platform is created which can
simultaneously maximise manufacturability and miniaturisation, while minimising
loss. We demonstrate the necessary platform components: photon-pair generation,
single-photon detection, and high-visibility quantum interference, all at
wavelengths beyond 2 m. Across various regimes, we observe a maximum net
coincidence rate of 448 12 Hz, a coincidence-to-accidental ratio of 25.7
1.1, and, a net two photon quantum interference visibility of 0.993
0.017. Mid-infrared silicon quantum photonics will bring new quantum
applications within reach.Comment: 8 pages, 4 figures; revised figures, updated discussion in section 3,
typos corrected, added referenc
Passively mode locked Raman laser
We report on the observation of a novel mode locked optical comb generated at
the Raman offset (Raman comb) in an optically pumped crystalline whispering
gallery mode resonator. Mode locking is confirmed via measurement of the
radio-frequency beat note produced by the optical comb on a fast photodiode.
Neither the conventional Kerr comb nor hyper-parametric oscillation is observed
when the Raman comb is present
Optoelectronic Reservoir Computing
Reservoir computing is a recently introduced, highly efficient bio-inspired
approach for processing time dependent data. The basic scheme of reservoir
computing consists of a non linear recurrent dynamical system coupled to a
single input layer and a single output layer. Within these constraints many
implementations are possible. Here we report an opto-electronic implementation
of reservoir computing based on a recently proposed architecture consisting of
a single non linear node and a delay line. Our implementation is sufficiently
fast for real time information processing. We illustrate its performance on
tasks of practical importance such as nonlinear channel equalization and speech
recognition, and obtain results comparable to state of the art digital
implementations.Comment: Contains main paper and two Supplementary Material
Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes
Fluctuations of the optical power incident on a photodiode can be converted
into phase fluctuations of the resulting electronic signal due to nonlinear
saturation in the semiconductor. This impacts overall timing stability (phase
noise) of microwave signals generated from a photodetected optical pulse train.
In this paper, we describe and utilize techniques to characterize this
conversion of amplitude noise to phase noise for several high-speed (>10 GHz)
InGaAs P-I-N photodiodes operated at 900 nm. We focus on the impact of this
effect on the photonic generation of low phase noise 10 GHz microwave signals
and show that a combination of low laser amplitude noise, appropriate
photodiode design, and optimum average photocurrent is required to achieve
phase noise at or below -100 dBc/Hz at 1 Hz offset a 10 GHz carrier. In some
photodiodes we find specific photocurrents where the power-to-phase conversion
factor is observed to go to zero
Optical frequency comb generation from a monolithic microresonator
Optical frequency combs provide equidistant frequency markers in the
infrared, visible and ultra-violet and can link an unknown optical frequency to
a radio or microwave frequency reference. Since their inception frequency combs
have triggered major advances in optical frequency metrology and precision
measurements and in applications such as broadband laser-based gas sensing8 and
molecular fingerprinting. Early work generated frequency combs by intra-cavity
phase modulation while to date frequency combs are generated utilizing the
comb-like mode structure of mode-locked lasers, whose repetition rate and
carrier envelope phase can be stabilized. Here, we report an entirely novel
approach in which equally spaced frequency markers are generated from a
continuous wave (CW) pump laser of a known frequency interacting with the modes
of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The
intrinsically broadband nature of parametric gain enables the generation of
discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without
relying on any external spectral broadening. Optical-heterodyne-based
measurements reveal that cascaded parametric interactions give rise to an
optical frequency comb, overcoming passive cavity dispersion. The uniformity of
the mode spacing has been verified to within a relative experimental precision
of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio
- …