939,346 research outputs found
A shadowing problem in the detection of overlapping communities: lifting the resolution limit through a cascading procedure
Community detection is the process of assigning nodes and links in
significant communities (e.g. clusters, function modules) and its development
has led to a better understanding of complex networks. When applied to sizable
networks, we argue that most detection algorithms correctly identify prominent
communities, but fail to do so across multiple scales. As a result, a
significant fraction of the network is left uncharted. We show that this
problem stems from larger or denser communities overshadowing smaller or
sparser ones, and that this effect accounts for most of the undetected
communities and unassigned links. We propose a generic cascading approach to
community detection that circumvents the problem. Using real and artificial
network datasets with three widely used community detection algorithms, we show
how a simple cascading procedure allows for the detection of the missing
communities. This work highlights a new detection limit of community structure,
and we hope that our approach can inspire better community detection
algorithms.Comment: 14 pages, 12 figures + supporting information (5 pages, 6 tables, 3
figures
Different approaches to community detection
A precise definition of what constitutes a community in networks has remained
elusive. Consequently, network scientists have compared community detection
algorithms on benchmark networks with a particular form of community structure
and classified them based on the mathematical techniques they employ. However,
this comparison can be misleading because apparent similarities in their
mathematical machinery can disguise different reasons for why we would want to
employ community detection in the first place. Here we provide a focused review
of these different motivations that underpin community detection. This
problem-driven classification is useful in applied network science, where it is
important to select an appropriate algorithm for the given purpose. Moreover,
highlighting the different approaches to community detection also delineates
the many lines of research and points out open directions and avenues for
future research.Comment: 14 pages, 2 figures. Written as a chapter for forthcoming Advances in
network clustering and blockmodeling, and based on an extended version of The
many facets of community detection in complex networks, Appl. Netw. Sci. 2: 4
(2017) by the same author
- …