421 research outputs found
Comments on real tachyon vacuum solution without square roots
We analyze the consistency of a recently proposed real tachyon vacuum
solution without square roots in open bosonic string field theory. We show that
the equation of motion contracted with the solution itself is satisfied.
Additionally, by expanding the solution in the basis of the curly
and the traditional eigenstates, we evaluate numerically
the vacuum energy and obtain a result in agreement with Sen's conjecture.Comment: 20 pages; one subsection adde
Numerical solution of open string field theory in Schnabl gauge
Using traditional Virasoro level-truncation computations, we evaluate
the open bosonic string field theory action up to level . Extremizing
this level-truncated potential, we construct a numerical solution for tachyon
condensation in Schnabl gauge. We find that the energy associated to the
numerical solution overshoots the expected value at level .
Extrapolating the level-truncation data for to estimate the vacuum
energies for , we predict that the energy reaches a minimum value at , and then turns back to approach asymptotically as . Furthermore, we analyze the tachyon vacuum expectation value (vev),
for which by extrapolating its corresponding level-truncation data, we predict
that the tachyon vev reaches a minimum value at , and then turns
back to approach the expected analytical result as .Comment: 37 pages, 9 figures, some typos correcte
Delays in Open String Field Theory
We study the dynamics of light-like tachyon condensation in a linear dilaton
background using level-truncated open string field theory. The equations of
motion are found to be delay differential equations. This observation allows us
to employ well-established mathematical methods that we briefly review. At
level zero, the equation of motion is of the so-called retarded type and a
solution can be found very efficiently, even in the far light-cone future. At
levels higher than zero however, the equations are not of the retarded type. We
show that this implies the existence of exponentially growing modes in the
non-perturbative vacuum, possibly rendering light-like rolling unstable.
However, a brute force calculation using exponential series suggests that for
the particular initial condition of the tachyon sitting in the false vacuum in
the infinite light-cone past, the rolling is unaffected by the unstable modes
and still converges to the non-perturbative vacuum, in agreement with the
solution of Hellerman and Schnabl. Finally, we show that the growing modes
introduce non-locality mixing present with future, and we are led to conjecture
that in the infinite level limit, the non-locality in a light-like linear
dilaton background is a discrete version of the smearing non-locality found in
covariant open string field theory in flat space.Comment: 48 pages, 14 figures. v2: References added; Section 4 augmented by a
discussion of the diffusion equation; discussion of growing modes in Section
4 slightly expande
Intersecting non-SUSY -brane with chargeless 0-brane as black -brane
Unlike BPS -brane, non-supersymmetric (non-susy) -brane could be either
charged or chargeless. As envisaged in [hep-th/0503007], we construct an
intersecting non-susy -brane with chargeless non-susy -brane by taking
T-dualities along the delocalized directions of the non-susy -brane solution
delocalized in transverse directions (where ). In general
these solutions are characterized by four independent parameters. We show that
when the intersecting charged as well as chargeless non-susy -brane
with chargeless 0-brane can be mapped by a coordinate transformation to black
-brane when two of the four parameters characterizing the solution take some
special values. For definiteness we restrict our discussion to space-time
dimensions . We observe that parameters characterizing the black brane
and the related dynamics are in general in a different branch of the parameter
space from those describing the brane-antibrane annihilation process. We
demonstrate this in the two examples, namely, the non-susy D0-brane and the
intersecting non-susy D4 and D0-branes, where the solutions with the explicit
microscopic descriptions are known.Comment: 25 page
Cosmological Signature of Tachyon Condensation
We consider the dynamics of the open string tachyon condensation in a
framework of the cubic fermionic String Field Theory including a non-minimal
coupling with closed string massless modes, the graviton and the dilaton.
Coupling of the open string tachyon and the dilaton is motivated by the open
String Field Theory in a linear dilaton background and the flat space-time. We
note that the dilaton gravity provides several restrictions on the tachyon
condensation and show explicitly that the influence of the dilaton on the
tachyon condensation is essential and provides a significant effect:
oscillations of the Hubble parameter and the state parameter become of a
cosmological scale. We give an estimation for the period of these oscillations
(0.1-1) Gyr and note a good agreement of this period with the observed
oscillations with a period (0.15-0.65) Gyr in a distribution of quasar spectra.Comment: 19 pages, JHEP3 class; v2: presentation in Section 3 improve
Dynamics with Infinitely Many Derivatives: The Initial Value Problem
Differential equations of infinite order are an increasingly important class
of equations in theoretical physics. Such equations are ubiquitous in string
field theory and have recently attracted considerable interest also from
cosmologists. Though these equations have been studied in the classical
mathematical literature, it appears that the physics community is largely
unaware of the relevant formalism. Of particular importance is the fate of the
initial value problem. Under what circumstances do infinite order differential
equations possess a well-defined initial value problem and how many initial
data are required? In this paper we study the initial value problem for
infinite order differential equations in the mathematical framework of the
formal operator calculus, with analytic initial data. This formalism allows us
to handle simultaneously a wide array of different nonlocal equations within a
single framework and also admits a transparent physical interpretation. We show
that differential equations of infinite order do not generically admit
infinitely many initial data. Rather, each pole of the propagator contributes
two initial data to the final solution. Though it is possible to find
differential equations of infinite order which admit well-defined initial value
problem with only two initial data, neither the dynamical equations of p-adic
string theory nor string field theory seem to belong to this class. However,
both theories can be rendered ghost-free by suitable definition of the action
of the formal pseudo-differential operator. This prescription restricts the
theory to frequencies within some contour in the complex plane and hence may be
thought of as a sort of ultra-violet cut-off.Comment: 40 pages, no figures. Added comments concerning fractional operators
and the implications of restricting the contour of integration. Typos
correcte
Boundary and Midpoint Behaviors of Lump Solutions in Vacuum String Field Theory
We discuss various issues concerning the behaviors near the boundary
(\sigma=0,\pi) and the midpoint (\sigma=\pi/2) of the open string coordinate
X(\sigma) and its conjugate momentum P(\sigma)=-i\delta/\delta X(\sigma) acting
on the matter projectors of vacuum string field theory. Our original interest
is in the dynamical change of the boundary conditions of the open string
coordinate from the Neumann one in the translationally invariant backgrounds to
the Dirichlet one in the D-brane backgrounds. We find that the Dirichlet
boundary condition is realized on a lump solution only partially and only when
its parameter takes a special value. On the other hand, the string midpoint has
a mysterious property: it obeys the Neumann (Dirichlet) condition in the
translationally invariant (lump) background.Comment: 23 pages, no figures, LaTeX2e, a reference adde
String Field Theory Solution for Any Open String Background
We present an exact solution of open bosonic string field theory which can be
used to describe any time-independent open string background. The solution
generalizes an earlier construction of Kiermaier, Okawa, and Soler, and assumes
the existence of boundary condition changing operators with nonsingular OPEs
and vanishing conformal dimension. Our main observation is that boundary
condition changing operators of this kind can describe nearly any open string
background provided the background shift is accompanied by a timelike Wilson
line of sufficient strength. As an application we analyze the tachyon lump
describing the formation of a D-brane in the string field theory of a
D-brane, for generic compactification radius. This not only provides a proof
of Sen's second conjecture, but also gives explicit examples of higher energy
solutions, confirming analytically that string field theory can "reverse" the
direction of the worldsheet RG flow. We also find multiple D-brane solutions,
demonstrating that string field theory can add Chan-Paton factors and change
the rank of the gauge group. Finally, we show how the solution provides a
remarkably simple and nonperturbative proof of the background independence of
open bosonic string field theory.Comment: V2: 42 pages, 11 figures, typos correcte
On the Bound States of p- and (p+2)-Branes
We study bound states of D-p-branes and D-(p+2)-branes. By switching on a
large magnetic field F on the (p+2) brane, the problem is shown to admit a
perturbative analysis in an expansion in inverse powers of F. It is found that,
to the leading order in 1/F, the quartic potential of the tachyonic state from
the open string stretched between the p- and (p+2)-brane gives a vacuum energy
which agrees with the prediction of the BPS mass formula for the bound state.
We generalize the discussion to the case of m p-branes plus 1 (p+2)-brane with
magnetic field. The T dual picture of this, namely several (p+2)-branes
carrying some p-brane charges through magnetic flux is also discussed, where
the perturbative treatment is available in the small F limit. We show that once
again, in the same approximation, the tachyon condensates give rise to the
correct BPS mass formula. The role of 't Hooft's toron configurations in the
extension of the above results beyond the quartic approximation as well as the
issue of the unbroken gauge symmetries are discussed. We comment on the
connection between the present bound state problem and Kondo-like problems in
the context of relevant boundary perturbations of boundary conformal field
theories.Comment: 34 pages, Late
f(R) Gravities, Killing Spinor Equations, "BPS" Domain Walls and Cosmology
We derive the condition on f(R) gravities that admit Killing spinor equations
and construct explicit such examples. The Killing spinor equations can be used
to reduce the fourth-order differential equations of motion to the first order
for both the domain wall and FLRW cosmological solutions. We obtain exact "BPS"
domain walls that describe the smooth Randall-Sundrum II, AdS wormholes and the
RG flow from IR to UV. We also obtain exact smooth cosmological solutions that
describe the evolution from an inflationary starting point with a larger
cosmological constant to an ever-expanding universe with a smaller cosmological
constant. In addition, We find exact smooth solutions of pre-big bang models,
bouncing or crunching universes. An important feature is that the scalar
curvature R of all these metrics is varying rather than a constant. Another
intriguing feature is that there are two different f(R) gravities that give
rise to the same "BPS" solution. We also study linearized f(R) gravities in
(A)dS vacua.Comment: 37 pages, discussion on gravity trapping in RSII modified, typos
corrected, further comments and references added; version to appear in JHE
- …