2 research outputs found

    Multi-source Satellite Remote Sensing Techniques for Landslide Monitoring and Characterization

    Full text link
    Landslides are natural geological hazards that pose significant threats, resulting in economic losses and casualties worldwide. Effective monitoring and characterization of landslides are crucial for understanding their evolution mechanisms and preventing catastrophic failures. While conventional field surveying methods provide accurate measurements of surface deformation, they are limited by high costs in terms of labor and time and uncertainties of arrangement for the ground-based equipment. The Satellite Interferometric Synthetic Aperture Radar (InSAR) technique has proven its application in landslide monitoring, offering advantages such as all-weather operations, wide spatial coverage, high spatial resolution, and high accuracy. InSAR can measure subtle changes along the SAR line-of-sight (LOS) direction but is not sensitive to movements along the north-south direction. Additionally, rapid movements during the failure stage can cause high decorrelation. On the other hand, satellite optical remote sensing data, combined with pixel offset tracking (POT) techniques, can measure large displacements in the horizontal plane. Moreover, multi-spectral analysis of optical images can offer insights into the spatial evolution of landslides. Therefore, the joint use of satellite InSAR and optical remote sensing techniques is complementary in landslide monitoring and characterization. However, the joint utilization of these techniques for capturing the long-term evolutions of landslides, particularly at their different stages using multi-source data, remains relatively unexplored. This dissertation aims to optimize and demonstrate the approaches for the joint use of satellite SAR and optical data in landslide monitoring and characterization across three distinct stages: pre-failure, failure, and post-failure. Three major landslides were studied in this dissertation. Firstly, the surface deformation of the 2017 Maoxian landslide during the pre-failure stage was captured using time series InSAR, while pre-failure slope features were detected from optical images. Secondly, the joint utilization of time series InSAR observations and optical analysis facilitated the monitoring of the pre-failure, failure, and post-failure stages of the 2020 Aniangzhai landslide. Lastly, the long-term post-failure deformation of the Huangtupo landslide in the Three Gorges Reservoir region was mapped using multi-source satellite SAR data, while the multi-temporal optical images were employed to investigate the long-term evolution of surface covers over the slope

    Book of short Abstracts of the 11th International Symposium on Digital Earth

    Get PDF
    The Booklet is a collection of accepted short abstracts of the ISDE11 Symposium
    corecore