368,148 research outputs found
First-order thermal correction to the quadratic response tensor and rate for second harmonic plasma emission
Three-wave interactions in plasmas are described, in the framework of kinetic
theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common
approximation for interactions between three fast waves. Here, the first-order
thermal correction (FOTC) to the cold-plasma QRT is derived for interactions
between three fast waves in a warm unmagnetized collisionless plasma, whose
particles have an arbitrary isotropic distribution function. The FOTC to the
cold-plasma QRT is shown to depend on the second moment of the distribution
function, the phase speeds of the waves, and the interaction geometry. Previous
calculations of the rate for second harmonic plasma emission (via Langmuir-wave
coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is
used here to calculate the FOTC to the second harmonic emission rate, and its
importance is assessed in various physical situations. The FOTC significantly
increases the rate when the ratio of the Langmuir phase speed to the electron
thermal speed is less than about 3.Comment: 11 pages, 2 figures, submitted to Physics of Plasma
Quaternionic approach to dual Magneto-hydrodynamics of dyonic cold plasma
The dual magneto-hydrodynamics of dyonic plasma describes the study of
electrodynamics equations along with the transport equations in the presence of
electrons and magnetic monopoles. In this paper, we formulate the quaternionic
dual fields equations, namely, the hydro-electric and hydro-magnetic fields
equations which are an analogous to the generalized Lamb vector field and
vorticity field equations of dyonic cold plasma fluid. Further, we derive the
quaternionic Dirac-Maxwell equations for dual magneto-hydrodynamics of dyonic
cold plasma. We also obtain the quaternionic dual continuity equations that
describe the transport of dyonic fluid. Finally, we establish an analogy of
Alfven wave equation which may generate from the flow of magnetic monopoles in
the dyonic field of cold plasma. The present quaternionic formulation for
dyonic cold plasma is well invariant under the duality, Lorentz and CPT
transformations.Comment: 20 pages, Revised versio
Cold plasma processing of local planetary ores for oxygen and metallurgically important metals
The utilization of a cold plasma in chlorination processing is described. Essential equipment and instruments were received, the experimental apparatus assembled and tested, and preliminary experiments conducted. The results of the latter lend support to the original hypothesis: a cold plasma can both significantly enhance and bias chemical reactions. In two separate experiments, a cold plasma was used to reduce TiCl4 vapor and chlorinate ilmenite. The latter, reacted in an argon-chlorine plasma, yielded oxygen. The former experiment reveals that chlorine can be recovered as HCl vapor from metal chlorides in a hydrogen plasma. Furthermore, the success of the hydrogen experiments has lead to an analysis of the feasibility of direct hydrogen reduction of metal oxides in a cold plasma. That process would produce water vapor and numerous metal by-products
Raman amplification in plasma : thermal effects
The impact of thermal effects on Raman amplification in plasma is investigated theoretically. It is shown that damping and the shift in plasma resonance at finite temperature can alter the evolution of an amplified pulse. It is shown that pulse compression can occur which is not predicted by the cold plasma model. Although thermal effects can lead to a reduction in the efficiency of the interaction, this can be avoided by using a chirped pump. In this case these effects can be beneficial, suppressing the development of a train of pulses behind the amplified seed, as observed in the cold plasma model
- …