628,940 research outputs found
Synchronisation effects on the behavioural performance and information dynamics of a simulated minimally cognitive robotic agent
Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain–body– environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour
Towards a neural-level cognitive architecture: modeling behavior in working memory tasks with neurons
Constrained by results from classic behavioral experiments we
provide a neural-level cognitive architecture for modeling behavior
in working memory tasks. We propose a canonical
microcircuit that can be used as a building block for working
memory, decision making and cognitive control. The controller
controls gates to route the flow of information between
the working memory and the evidence accumulator and sets
parameters of the circuits. We show that this type of cognitive
architecture can account for results in behavioral experiments
such as judgment of recency, probe recognition and delayedmatch-
to-sample. In addition, the neural dynamics generated
by the cognitive architecture provides a good match with neurophysiological
data from rodents and monkeys. For instance,
it generates cells tuned to a particular amount of elapsed time
(time cells), to a particular position in space (place cells) and
to a particular amount of accumulated evidence.http://sites.bu.edu/tcn/files/2019/05/Cogsci2019_TiganjEtal.pdfAccepted manuscrip
Prehypertensive blood pressures and regional cerebral blood flow independently relate to cognitive performance in midlife
Background
High blood pressure is thought to contribute to dementia in late life, but our understanding of the relationship between individual differences in blood pressure (
BP
) and cognitive functioning is incomplete. In this study, cognitive performance in nonhypertensive midlife adults was examined as a function of resting
BP
and regional cerebral blood flow (
rCBF
) responses during cognitive testing. We hypothesized that
BP
would be negatively related to cognitive performance and that cognitive performance would also be related to
rCBF
responses within areas related to
BP
control. We explored whether deficits related to systolic
BP
might be explained by
rCBF
responses to mental challenge.
Methods and Results
Healthy midlife participants (n=227) received neuropsychological testing and performed cognitive tasks in a magnetic resonance imaging scanner. A pseudocontinuous arterial spin labeling sequence assessed
rCBF
in brain areas related to
BP
in prior studies. Systolic
BP
was negatively related to 4 of 5 neuropsychological factors (standardized β>0.13): memory, working memory, executive function, and mental efficiency. The
rCBF
in 2 brain regions of interest was similarly related to memory, executive function, and working memory (standardized β>0.17); however,
rCBF
responses did not explain the relationship between resting systolic
BP
and cognitive performance.
Conclusions
Relationships at midlife between prehypertensive levels of systolic
BP
and both cognitive and brain function were modest but suggested the possible value of midlife intervention.
</jats:sec
Non-Aβ-dependent factors associated with global cognitive and physical function in alzheimer's disease: a pilot multivariate analysis
Recent literature highlights the importance of identifying factors associated with mild cognitive impairment (MCI) and Alzheimer's Disease (AD). Actual validated biomarkers include neuroimaging and cerebrospinal fluid assessments; however, we investigated non-Aβ-dependent factors associated with dementia in 12 MCI and 30 AD patients. Patients were assessed for global cognitive function (Mini-Mental state examination-MMSE), physical function (Physical Performance Test-PPT), exercise capacity (6-min walking test-6MWT), maximal oxygen uptake (VO₂max), brain volume, vascular function (flow-mediated dilation-FMD), inflammatory status (tumor necrosis factor-α ,TNF- α, interleukin-6, -10 and -15) and neurotrophin receptors (p75NTR and Tropomyosin receptor kinase A -TrkA). Baseline multifactorial information was submitted to two separate backward stepwise regression analyses to identify the variables associated with cognitive and physical decline in demented patients. A multivariate regression was then applied to verify the stepwise regression. The results indicated that the combination of 6MWT and VO₂max was associated with both global cognitive and physical function (MMSE = 11.384 + (0.00599 × 6MWT) - (0.235 × VO₂max)); (PPT = 1.848 + (0.0264 × 6MWT) + (19.693 × VO₂max)). These results may offer important information that might help to identify specific targets for therapeutic strategies (NIH Clinical trial identification number NCT03034746)
Brain rhythms of pain
Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain
Executive function after exhaustive exercise
PurposeFindings concerning the effects of exhaustive exercise on cognitive function are somewhat equivocal. The purpose of this study was to identify physiological factors that determine executive function after exhaustive exercise.MethodsThirty-two participants completed the cognitive tasks before and after an incremental exercise until exhaustion (exercise group: N = 18) or resting period (control group N = 14). The cognitive task was a combination of a Spatial Delayed-Response (Spatial DR) task and a Go/No-Go task, which requires executive function. Cerebral oxygenation and skin blood flow were monitored during the cognitive task over the prefrontal cortex. Venous blood samples were collected before and after the exercise or resting period, and blood catecholamines, serum brain-derived neurotrophic factor, insulin-like growth hormone factor 1, and blood lactate concentrations were analyzed.ResultsIn the exercise group, exhaustive exercise did not alter reaction time (RT) in the Go/No-Go task (pre: 861 ± 299 ms vs. post: 775 ± 168 ms) and the number of error trials in the Go/No-Go task (pre: 0.9 ± 0.7 vs. post: 1.8 ± 1.8) and the Spatial DR task (pre: 0.3 ± 0.5 vs. post: 0.8 ± 1.2). However, ΔRT was negatively correlated with Δcerebral oxygenation (r = −0.64, P = 0.004). Other physiological parameters were not correlated with cognitive performance. Venous blood samples were not directly associated with cognitive function after exhaustive exercise.ConclusionThe present results suggest that recovery of regional cerebral oxygenation affects executive function after exhaustive exercise
Recommended from our members
The impact of fruit flavonoids on memory and cognition
There is intense interest in the studies related to the potential of phytochemical-rich foods to prevent age-related neurodegeneration and cognitive decline. Recent evidence has indicated that a group of plant-derived compounds known as flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. In particular, evidence suggests that foods rich in three specific flavonoid sub-groups, the flavanols, anthocyanins and/or flavanones, possess the greatest potential to act on the cognitive processes. This review will highlight the evidence for the actions of such flavonoids, found most commonly in fruits, such as apples, berries and citrus, on cognitive behaviour and the underlying cellular architecture. Although the precise mechanisms by which these flavonoids act within the brain remain unresolved, the present review focuses on their ability to protect vulnerable neurons and enhance the function of existing neuronal structures, two processes known to be influenced by flavonoids and also known to underpin neuro-cognitive function. Most notably, we discuss their selective interactions with protein kinase and lipid kinase signalling cascades (i.e. phosphoinositide-3 kinase/Akt and mitogen-activated protein kinase pathways), which regulate transcription factors and gene expression involved in both synaptic plasticity and cerebrovascular blood flow. Overall, the review attempts to provide an initial insight into the potential impact of regular flavonoid-rich fruit consumption on normal or abnormal deteriorations in cognitive performance
Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort
Cocoa flavanols (CF) positively influence physiological processes in ways that suggest their consumption may improve aspects of cognitive function. This study investigated the acute cognitive and subjective effects of CF consumption during sustained mental demand. In this randomized, controlled, double-blinded, balanced, three period crossover trial 30 healthy adults consumed drinks containing 520 mg, 994 mg CF and a matched control, with a three-day washout between drinks. Assessments included the state anxiety inventory and repeated 10-min cycles of a Cognitive Demand Battery comprising of two serial subtraction tasks (Serial Threes and Serial Sevens), a Rapid Visual Information Processing (RVIP) task and a mental fatigue scale, over the course of 1 h. Consumption of both 520 mg and 994 mg CF significantly improved Serial Threes performance. The 994 mg CF beverage significantly speeded RVIP responses but also resulted in more errors during Serial Sevens. Increases in self-reported mental fatigue were significantly attenuated by the consumption of the 520 mg CF beverage only. This is the first report of acute cognitive improvements following CF consumption in healthy adults. While the mechanisms underlying the effects are unknown they may be related to known effects of CF on endothelial function and blood flow
- …