2,255 research outputs found

    Combining complex networks and data mining: why and how

    Full text link
    The increasing power of computer technology does not dispense with the need to extract meaningful in- formation out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.Comment: 58 pages, 19 figure

    Analysis of Retinal Image Data to Support Glaucoma Diagnosis

    Get PDF
    Fundus kamera je ĆĄiroce dostupnĂ© zobrazovacĂ­ zaƙízenĂ­, kterĂ© umoĆŸĆˆuje relativně rychlĂ© a nenĂĄkladnĂ© vyĆĄetƙenĂ­ zadnĂ­ho segmentu oka – sĂ­tnice. Z těchto dĆŻvodĆŻ se mnoho vĂœzkumnĂœch pracoviĆĄĆ„ zaměƙuje prĂĄvě na vĂœvoj automatickĂœch metod diagnostiky nemocĂ­ sĂ­tnice s vyuĆŸitĂ­m fundus fotografiĂ­. Tato dizertačnĂ­ prĂĄce analyzuje současnĂœ stav vědeckĂ©ho poznĂĄnĂ­ v oblasti diagnostiky glaukomu s vyuĆŸitĂ­m fundus kamery a navrhuje novou metodiku hodnocenĂ­ vrstvy nervovĂœch vlĂĄken (VNV) na sĂ­tnici pomocĂ­ texturnĂ­ analĂœzy. Spolu s touto metodikou je navrĆŸena metoda segmentace cĂ©vnĂ­ho ƙečiĆĄtě sĂ­tnice, jakoĆŸto dalĆĄĂ­ hodnotnĂœ pƙíspěvek k současnĂ©mu stavu ƙeĆĄenĂ© problematiky. Segmentace cĂ©vnĂ­ho ƙečiĆĄtě rovnÄ›ĆŸ slouĆŸĂ­ jako nezbytnĂœ krok pƙedchĂĄzejĂ­cĂ­ analĂœzu VNV. Vedle toho prĂĄce publikuje novou volně dostupnou databĂĄzi snĂ­mkĆŻ sĂ­tnice se zlatĂœmi standardy pro Ășčely hodnocenĂ­ automatickĂœch metod segmentace cĂ©vnĂ­ho ƙečiĆĄtě.Fundus camera is widely available imaging device enabling fast and cheap examination of the human retina. Hence, many researchers focus on development of automatic methods towards assessment of various retinal diseases via fundus images. This dissertation summarizes recent state-of-the-art in the field of glaucoma diagnosis using fundus camera and proposes a novel methodology for assessment of the retinal nerve fiber layer (RNFL) via texture analysis. Along with it, a method for the retinal blood vessel segmentation is introduced as an additional valuable contribution to the recent state-of-the-art in the field of retinal image processing. Segmentation of the blood vessels also serves as a necessary step preceding evaluation of the RNFL via the proposed methodology. In addition, a new publicly available high-resolution retinal image database with gold standard data is introduced as a novel opportunity for other researches to evaluate their segmentation algorithms.

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    A robust framework for medical image segmentation through adaptable class-specific representation

    Get PDF
    Medical image segmentation is an increasingly important component in virtual pathology, diagnostic imaging and computer-assisted surgery. Better hardware for image acquisition and a variety of advanced visualisation methods have paved the way for the development of computer based tools for medical image analysis and interpretation. The routine use of medical imaging scans of multiple modalities has been growing over the last decades and data sets such as the Visible Human Project have introduced a new modality in the form of colour cryo section data. These developments have given rise to an increasing need for better automatic and semiautomatic segmentation methods. The work presented in this thesis concerns the development of a new framework for robust semi-automatic segmentation of medical imaging data of multiple modalities. Following the specification of a set of conceptual and technical requirements, the framework known as ACSR (Adaptable Class-Specific Representation) is developed in the first case for 2D colour cryo section segmentation. This is achieved through the development of a novel algorithm for adaptable class-specific sampling of point neighbourhoods, known as the PGA (Path Growing Algorithm), combined with Learning Vector Quantization. The framework is extended to accommodate 3D volume segmentation of cryo section data and subsequently segmentation of single and multi-channel greyscale MRl data. For the latter the issues of inhomogeneity and noise are specifically addressed. Evaluation is based on comparison with previously published results on standard simulated and real data sets, using visual presentation, ground truth comparison and human observer experiments. ACSR provides the user with a simple and intuitive visual initialisation process followed by a fully automatic segmentation. Results on both cryo section and MRI data compare favourably to existing methods, demonstrating robustness both to common artefacts and multiple user initialisations. Further developments into specific clinical applications are discussed in the future work section

    Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey

    Full text link
    © 2016 IEEE. The rapid development of digital imaging and computer vision has increased the potential of using the image processing technologies in ophthalmology. Image processing systems are used in standard clinical practices with the development of medical diagnostic systems. The retinal images provide vital information about the health of the sensory part of the visual system. Retinal diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, Stargardt's disease, and retinopathy of prematurity, can lead to blindness manifest as artifacts in the retinal image. An automated system can be used for offering standardized large-scale screening at a lower cost, which may reduce human errors, provide services to remote areas, as well as free from observer bias and fatigue. Treatment for retinal diseases is available; the challenge lies in finding a cost-effective approach with high sensitivity and specificity that can be applied to large populations in a timely manner to identify those who are at risk at the early stages of the disease. The progress of the glaucoma disease is very often quiet in the early stages. The number of people affected has been increasing and patients are seldom aware of the disease, which can cause delay in the treatment. A review of how computer-aided approaches may be applied in the diagnosis and staging of glaucoma is discussed here. The current status of the computer technology is reviewed, covering localization and segmentation of the optic nerve head, pixel level glaucomatic changes, diagonosis using 3-D data sets, and artificial neural networks for detecting the progression of the glaucoma disease

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions
    • 

    corecore