186,862 research outputs found
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD
Recommended from our members
Making Memories: Why Time Matters
In the last decade advances in human neuroscience have identified the critical importance of time in creating long-term memories. Circadian neuroscience has established biological time functions via cellular clocks regulated by photosensitive retinal ganglion cells and the suprachiasmatic nuclei. Individuals have different circadian clocks depending on their chronotypes that vary with genetic, age, and sex. In contrast, social time is determined by time zones, daylight savings time, and education and employment hours. Social time and circadian time differences can lead to circadian desynchronization, sleep deprivation, health problems, and poor cognitive performance. Synchronizing social time to circadian biology leads to better health and learning, as demonstrated in adolescent education. In-day making memories of complex bodies of structured information in education is organized in social time and uses many different learning techniques. Research in the neuroscience of long-term memory (LTM) has demonstrated in-day time spaced learning patterns of three repetitions of information separated by two rest periods are effective in making memories in mammals and humans. This time pattern is based on the intracellular processes required in synaptic plasticity. Circadian desynchronization, sleep deprivation, and memory consolidation in sleep are less well-understood, though there has been considerable progress in neuroscience research in the last decade. The interplay of circadian, in-day and sleep neuroscience research are creating an understanding of making memories in the first 24-h that has already led to interventions that can improve health and learning
Editorial on Cerebral endothelial and glial cells are more than bricks in the Great Wall of the brain: insights into the way the blood-brain barrier actually works (celebrating the centenary of Goldman's experiments)
Carta editorial a la revista Frontiers in cellular neuroscience sobre las células endoteliales cerebrales y gliales. Se analiza la manera en que la barrera sangre-cerebro realmente funciona.Editorial letter to Frontiers in cellular neuroscience on cerebral endothelial and glial cells. It looks at how the blood-brain barrier actually works.peerReviewe
Editorial: Brain-inspired computing: Neuroscience drives the development of new electronics and artificial intelligence
Editorial for a special issue (i.e. "Research Topic") launched on the Journal Frontiers in Cellular Neuroscience - Section Cellular Neurophysiology
Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).
Optical methods capable of manipulating neural activity with cellular resolution and millisecond precision in three dimensions will accelerate the pace of neuroscience research. Existing approaches for targeting individual neurons, however, fall short of these requirements. Here we present a new multiphoton photo-excitation method, termed three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT), which allows precise, simultaneous photo-activation of arbitrary sets of neurons anywhere within the addressable volume of a microscope. This technique uses point-cloud holography to place multiple copies of a temporally focused disc matching the dimensions of a neurons cell body. Experiments in cultured cells, brain slices, and in living mice demonstrate single-neuron spatial resolution even when optically targeting randomly distributed groups of neurons in 3D. This approach opens new avenues for mapping and manipulating neural circuits, allowing a real-time, cellular resolution interface to the brain
Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation
Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field
Knowing one's place: a free-energy approach to pattern regulation.
Understanding how organisms establish their form during embryogenesis and regeneration represents a major knowledge gap in biological pattern formation. It has been recently suggested that morphogenesis could be understood in terms of cellular information processing and the ability of cell groups to model shape. Here, we offer a proof of principle that self-assembly is an emergent property of cells that share a common (genetic and epigenetic) model of organismal form. This behaviour is formulated in terms of variational free-energy minimization-of the sort that has been used to explain action and perception in neuroscience. In brief, casting the minimization of thermodynamic free energy in terms of variational free energy allows one to interpret (the dynamics of) a system as inferring the causes of its inputs-and acting to resolve uncertainty about those causes. This novel perspective on the coordination of migration and differentiation of cells suggests an interpretation of genetic codes as parametrizing a generative model-predicting the signals sensed by cells in the target morphology-and epigenetic processes as the subsequent inversion of that model. This theoretical formulation may complement bottom-up strategies-that currently focus on molecular pathways-with (constructivist) top-down approaches that have proved themselves in neuroscience and cybernetics
- …