248,688 research outputs found
Metabolite changes in blood predict the onset of tuberculosis
Immunogenetics and cellular immunology of bacterial infectious disease
Clonal expansion shapes the human V\u3b41T cell receptor repertoire.
Cellular and Molecular Immunology aims to report the dynamic progress being made in China and abroad in immunological research, and welcomes high-quality Research Articles, Reviews and Brief Reports across a broad range of topics including, but not limited to, clinical immunology, comparative immunology, immunobiology, immunogenetics, immunological techniques, immunopathology, immunopharmacology, infection immunology, neuroimmunology, transplantation immunology, tumor immunology, and veterinary immunology
Исследования функциональности и состояния защитных сооружений ГО г. Юрги
Immunogenetics and cellular immunology of bacterial infectious disease
Performance Prediction of Helical-Type Seawater MHD Power Generator for Enlargement
Immunogenetics and cellular immunology of bacterial infectious disease
Mathematical models for immunology:current state of the art and future research directions
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years
Cell migration and chimerism after whole‐organ transplantation: The basis of graft acceptance
Improvements in the prevention or control of rejection of the kidney and liver have been largely interchangeable (1, 2) and then applicable, with very little modification, to thoracic and other organs. However, the mechanism by which anti rejection treatment permits any of these grafts to be “accepted” has been an immunological enigma (3, 4). We have proposed recently that the exchange of migratory leukocytes between the transplant and the recipient with consequent long-term cellular chimerism in both is the basis for acceptance of all whole-organ allografts and xenografts (5). Although such chimerism was demonstrated only a few months ago, the observations have increased our insight into transplantation immunology and have encouraged the development of alternative therapeutic strategies (6)
SIMMUNE, a tool for simulating and analyzing immune system behavior
We present a new approach to the simulation and analysis of immune system
behavior. The simulations that can be done with our software package called
SIMMUNE are based on immunological data that describe the behavior of immune
system agents (cells, molecules) on a microscopial (i.e. agent-agent
interaction) scale by defining cellular stimulus-response mechanisms. Since the
behavior of the agents in SIMMUNE can be very flexibly configured, its
application is not limited to immune system simulations. We outline the
principles of SIMMUNE's multiscale analysis of emergent structure within the
simulated immune system that allow the identification of immunological contexts
using minimal a priori assumptions about the higher level organization of the
immune system.Comment: 23 pages, 10 figure
- …