186,886 research outputs found

    To Lyse or Not to Lyse: Transient-Mediated Stochastic Fate Determination in Cells Infected by Bacteriophages

    Get PDF
    Cell fate determination is usually described as the result of the stochastic dynamics of gene regulatory networks (GRNs) reaching one of multiple steady-states each of which corresponds to a specific decision. However, the fate of a cell is determined in finite time suggesting the importance of transient dynamics in cellular decision making. Here we consider cellular decision making as resulting from first passage processes of regulatory proteins and examine the effect of transient dynamics within the initial lysis-lysogeny switch of phage λ. Importantly, the fate of an infected cell depends, in part, on the number of coinfecting phages. Using a quantitative model of the phage λ GRN, we find that changes in the likelihood of lysis and lysogeny can be driven by changes in phage co-infection number regardless of whether or not there exists steady-state bistability within the GRN. Furthermore, two GRNs which yield qualitatively distinct steady state behaviors as a function of phage infection number can show similar transient responses, sufficient for alternative cell fate determination. We compare our model results to a recent experimental study of cell fate determination in single cell assays of multiply infected bacteria. Whereas the experimental study proposed a “quasi-independent” hypothesis for cell fate determination consistent with an observed data collapse, we demonstrate that observed cell fate results are compatible with an alternative form of data collapse consistent with a partial gene dosage compensation mechanism. We show that including partial gene dosage compensation at the mRNA level in our stochastic model of fate determination leads to the same data collapse observed in the single cell study. Our findings elucidate the importance of transient gene regulatory dynamics in fate determination, and present a novel alternative hypothesis to explain single-cell level heterogeneity within the phage λ lysis-lysogeny decision switch

    Binary specification of nerve cord and notochord cell fates in ascidian embryos

    Get PDF
    In the ascidian embryo, the nerve cord and notochord of the tail of tadpole larvae originate from the precursor blastomeres for both tissues in the 32-cell-stage embryo. Each fate is separated into two daughter blastomeres at the next cleavage. We have examined mechanisms that are responsible for nerve cord and notochord specification through experiments involving blastomere isolation, cell dissociation, and treatment with basic fibroblast growth factor (bFGF) and inhibitors for the mitogen-activated protein kinase (MAPK) cascade. It has been shown that inductive cell interaction at the 32-cell stage is required for notochord formation. Our results show that the nerve cord fate is determined autonomously without any cell interaction. Presumptive notochord blastomeres also assume a nerve cord fate when they are isolated before induction is completed. By contrast, not only presumptive notochord blastomeres but also presumptive nerve cord blastomeres forsake their default nerve cord fate and choose the notochord fate when they are treated with bFGF. When the FGF-Ras-MAPK signaling cascade is inhibited, both blastomeres choose the default nerve cord pathway, supporting the results of blastomere isolation. Thus, binary choice of alternative fates and asymmetric division are involved in this nerve cord/notochord fate determination system, mediated by FGF signaling

    Cell-fate determination by ubiquitin-dependent regulation of translation.

    Get PDF
    Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination

    BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Get PDF
    In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell) fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the evolution of multicellularity

    Selected MicroRNAs Define Cell Fate Determination of Murine Central Memory CD8 T Cells

    Get PDF
    During an immune response T cells enter memory fate determination, a program that divides them into two main populations: effector memory and central memory T cells. Since in many systems protection appears to be preferentially mediated by T cells of the central memory it is important to understand when and how fate determination takes place. To date, cell intrinsic molecular events that determine their differentiation remains unclear. MicroRNAs are a class of small, evolutionarily conserved RNA molecules that negatively regulate gene expression, causing translational repression and/or messenger RNA degradation. Here, using an in vitro system where activated CD8 T cells driven by IL-2 or IL-15 become either effector memory or central memory cells, we assessed the role of microRNAs in memory T cell fate determination. We found that fate determination to central memory T cells is under the balancing effects of a discrete number of microRNAs including miR-150, miR-155 and the let-7 family. Based on miR-150 a new target, KChIP.1 (K + channel interacting protein 1), was uncovered, which is specifically upregulated in developing central memory CD8 T cells. Our studies indicate that cell fate determination such as surface phenotype and self-renewal may be decided at the pre-effector stage on the basis of the balancing effects of a discrete number of microRNAs. These results may have implications for the development of T cell vaccines and T cell-based adoptive therapies

    Asymmetric Cell Division: A CAB Driver for Spindle Movements

    Get PDF
    To divide asymmetrically, a cell must position the mitotic spindle relative to localized cell fate determinants. Recent work in the early ascidian embryo reveals the function of a single factor that coordinates this act to control cleavage pattern and cell fate determination

    Surface Roughness Gradients Reveal Topography‐Specific Mechanosensitive Responses in Human Mesenchymal Stem Cells

    Get PDF
    The topographic features of an implant, which mechanically regulate cell behaviors and functions, are critical for the clinical success in tissue regeneration. How cells sense and respond to the topographical cues, e.g., interfacial roughness, is yet to be fully understood and even debatable. Here, the mechanotransduction and fate determination of human mesenchymal stem cells (MSCs) on surface roughness gradients are systematically studied. The broad range of topographical scales and high‐throughput imaging is achieved based on a catecholic polyglycerol coating fabricated by a one‐step‐tilted dip‐coating approach. It is revealed that the adhesion of MSCs is biphasically regulated by interfacial roughness. The cell mechanotransduction is investigated from focal adhesion to transcriptional activity, which explains that cellular response to interfacial roughness undergoes a direct force‐dependent mechanism. Moreover, the optimized roughness for promoting cell fate specification is explored

    Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis

    Full text link
    Cell fate determination is a basic developmental process during the growth of multicellular organisms. Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mechanisms controlling cell fate determination and cell morphogenesis. The regulation of trichome and root hair formation is a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and bHLH transcriptional factors. Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109574/1/jipb12221.pd

    Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination

    Get PDF
    abstract: The process of cell fate determination has been depicted intuitively as cells travelling and resting on a rugged landscape, which has been probed by various theoretical studies. However, few studies have experimentally demonstrated how underlying gene regulatory networks shape the landscape and hence orchestrate cellular decision-making in the presence of both signal and noise. Here we tested different topologies and verified a synthetic gene circuit with mutual inhibition and auto-activations to be quadrastable, which enables direct study of quadruple cell fate determination on an engineered landscape. We show that cells indeed gravitate towards local minima and signal inductions dictate cell fates through modulating the shape of the multistable landscape. Experiments, guided by model predictions, reveal that sequential inductions generate distinct cell fates by changing landscape in sequence and hence navigating cells to different final states. This work provides a synthetic biology framework to approach cell fate determination and suggests a landscape-based explanation of fixed induction sequences for targeted differentiation
    • 

    corecore